Unveiling the mechanism of action and regulation of the steroidogenic acute regulatory protein

Mol Cell Endocrinol. 1998 Oct 25;145(1-2):39-45. doi: 10.1016/s0303-7207(98)00167-1.

Abstract

Stimulation of steroid-producing cells of the gonads and adrenals with trophic hormone (LH, and ACTH, respectively) produces a marked increase in steroid hormone synthesis within minutes. The rate-limiting step in this acute steroidogenic response is the transport of cholesterol from the outer to the inner mitochondrial membrane, where the first committed step in steroid synthesis is performed by the side-chain cleavage enzyme system (P450scc), resulting in the production of pregnenolone. This process of cholesterol translocation is blocked by inhibitors of protein synthesis (i.e. cycloheximide) indicating that the effect of trophic hormones, acting through the intermediacy of cAMP, most likely involves the de novo synthesis of a protein that is rapidly inactivated. The recently identified steroidogenic acute regulatory protein (StAR) appears to be the most likely candidate for the labile protein: (1) StAR is synthesized in response to cAMP and the StAR preprotein disappears rapidly in the presence of inhibitors of protein synthesis; (2) StAR has an N-terminal targeting sequence that directs the protein to the mitochondria; and (3) StAR protein is expressed almost exclusively in steroid-producing cells, its presence is correlated with steroid hormone production, and lack of functional StAR causes the autosomal recessive disease congenital lipoid adrenal hyperplasia (lipoid CAH), characterized by markedly impaired gonadal and adrenal steroid hormone synthesis. We have demonstrated that StAR is a target for serine phosphorylation mediated by protein kinase A (PKA), a process that is essential to maximizing StAR activity. StAR import by mitochondria is not essential to its steroidogenesis enhancing activity, and more likely, represents a means of rapidly inactivating StAR. Truncation mutations and site-directed mutations in StAR demonstrated that the C-terminus of the protein contains the functionally important domains. Further, we have demonstrated potent steroidogenic activity of recombinant StAR protein on isolated mitochondria from bovine corpus luteum using protein that lacks the mitochondrial targeting sequence. These observations confirm that StAR import is not essential for its steroidogenic activity and suggest that StAR acts directly on the outer mitochondrial membrane in the absence of intermediary cytosolic factors. More recently, we have found that StAR functions as a cholesterol transfer protein that does not require a protein receptor or co-factor, suggesting that StAR acts directly on lipids of the outer mitochondrial membrane to promote cholesterol translocation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Cholesterol / metabolism
  • Gene Expression Regulation*
  • Hormones / biosynthesis
  • Humans
  • Intracellular Membranes / metabolism
  • Mitochondria / metabolism
  • Phosphoproteins / chemistry
  • Phosphoproteins / genetics
  • Phosphoproteins / isolation & purification
  • Phosphoproteins / metabolism*
  • Protein Conformation
  • Steroids / biosynthesis
  • Structure-Activity Relationship

Substances

  • Hormones
  • Phosphoproteins
  • Steroids
  • steroidogenic acute regulatory protein
  • Cholesterol