Conformational interconversions in peptide beta-turns: analysis of turns in proteins and computational estimates of barriers

J Mol Biol. 1998 Dec 18;284(5):1505-16. doi: 10.1006/jmbi.1998.2154.

Abstract

The two most important beta-turn features in peptides and proteins are the type I and type II turns, which differ mainly in the orientation of the central peptide unit. Facile conformational interconversion is possible, in principle, by a flip of the central peptide unit. Homologous crystal structures afford an opportunity to structurally characterize both possible conformational states, thus allowing identification of sites that are potentially stereochemically mobile. A representative data set of 250 high-resolution (</=2.0 A), non-homologous protein crystal structures and corresponding variant and homologous entries, obtained from the Brookhaven Protein Data Bank, was examined to identify turns that are assigned different conformational types (type I/type II) in related structures. A total of 55 examples of beta-turns were identified as possible candidates for a stereochemically mobile site. Of the 55 examples, 45 could be classified as a potential site for interconversion between type I and type II beta-turns, while ten correspond to flips from type I' to type II' structures. As a further check, the temperature factors of the central peptide unit carbonyl oxygen atom of the 55 examples were examined. The analysis reveals that the turn assignments are indeed reliable. Examination of the secondary structures at the flanking positions of the flippable beta-turns reveals that seven examples occur in the loop region of beta-hairpins, indicating that the formation of ordered secondary structures on either side of the beta-turn does not preclude local conformational variations. In these beta-turns, Pro (11 examples), Lys (nine examples) and Ser (seven examples) were most often found at the i+1 position. Glycine was found to occur overwhelmingly at position i+2 (28 examples), while Ser (seven examples) and Asn (six examples) were amongst the most frequent residues. Activation energy barriers for the interconversion between type I and type II beta-turns were computed using the peptide models Ac-Pro-Aib-NHMe and Ac-Pro-Gly-NHMe within the framework of the AM1 semi-empirical molecular orbital procedure. In order to have a uniform basis for comparison and to eliminate the distracting influence of the deviation of backbone dihedral angles from that expected for ideal beta-turns, the dihedral angles phii+1 and psii+2 were fixed at the ideal values (phii+1=-60 degrees and psii+2=0 degrees). The other two angles (psii+1 and phii+2) were varied systematically to go from type II to type I beta-turn structures. The computational results suggest that there exists one stereospecific, concerted flip of the central peptide unit involving correlated single bond rotation that can occur with an activation barrier of the order of 3 kcal/mol. The results presented here suggest that conformational variations in beta-turns are observed in protein crystal structures and such changes may be an important dynamic feature in solution.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Models, Chemical
  • Models, Molecular*
  • Peptides / chemistry
  • Protein Conformation*
  • Proteins / chemistry*

Substances

  • Peptides
  • Proteins