Scanning electron microscopic study of the effects of Er:YAG laser on root cementum

J Periodontol. 1998 Nov;69(11):1283-90. doi: 10.1902/jop.1998.69.11.1283.

Abstract

Use of Er:YAG laser has been proposed for the removal of microbial deposits and calculus present on teeth affected by periodontal disease. However, the influence of Er:YAG laser irradiation on root surfaces has not yet been fully investigated. The aim of the present study was to evaluate the effects of Er:YAG laser irradiation on root cementum by scanning electron microscopy (SEM). Specimens were obtained from extracted human periodontally-diseased teeth using a water-cooled high-speed bur. An Er:YAG laser beam was then applied at various powers ranging from 25 to 100 mJ/ pulse/sec. The laser irradiation was performed under water irrigation, with the tip held perpendicular to the root surface in the contact mode. Following laser exposure, specimens were fixed, dehydrated, and dried at critical-point in liquid CO2. After mounting on SEM plates and sputter-coating with gold, the cementum surface was examined by SEM. Observations of the root surface showed a relatively flat surface in control specimens. In Er:YAG exposed specimens, the laser beam created a circular, notched-edge, crater-like defect on the root. The bottom of the lesion showed an irregular and sharp-pointed surface. Subsequently, the specimens were fractured with a sharp scalpel perpendicularly to the surface. SEM observations of these specimens showed a 15 microm layer of damaged tissue within the laser-irradiated cementum. The tissue presented an amorphous appearance and the Sharpey's and matrix fiber bundles were not clearly distinguishable. These observations indicate that cementum tissue could be damaged by Er:YAG laser irradiation.

MeSH terms

  • Dental Cementum / radiation effects*
  • Dental Cementum / ultrastructure
  • Dental Deposits / radiotherapy*
  • Humans
  • Microscopy, Electron, Scanning