Multiple conformations of an intercalated (-)-(7S,8R,9S, 10R)-N6-[10-(7,8,9,10-tetrahydrobenzo[a]pyrenyl)]-2'-deoxyadenosyl adduct in the N-ras codon 61 sequence

Biochemistry. 1998 Nov 24;37(47):16516-28. doi: 10.1021/bi9817616.

Abstract

The structure of the (-)-(7S,8R,9S,10R)-N6-[10-(7,8,9, 10-tetrahydrobenzo[a]pyrenyl)]-2'-deoxyadenosyl adduct at A7 of 5'-d(CGGACAAGAAG)-3'.5'-d(CTTCTTGTCCG)-3', derived from trans addition of the exocyclic N6-amino group of dA to (-)-(7S,8R,9R, 10S)-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(-)-DE2], was determined using molecular dynamics simulations restrained by 532 NOEs from 1H NMR. This was named the SRSR(61,3) adduct, derived from the N-rasprotooncogene at and adjacent to the nucleotides encoding amino acid 61 (underlined) of the p21 gene product. The solution structure of this adduct was best described as a mixture of two conformations in rapid equilibrium on the NMR time scale. The two populations differed in the pseudorotation angle of the sugar ring for the 5'-neighboring base A6, as determined from scalar coupling data. One population, estimated to be present at 53%, had the A6 deoxyribose in the C2'-endo conformation, while in the second conformation the A6 deoxyribose was in the C3'-endo conformation. NOEs between C5, A6, and SRSRA7 were either disrupted or weakened, as were those in the complementary strand between C15, T16, and T17. Major groove NOEs were observed between the benzo[a]pyrene aromatic protons, H1, H2, H3, H4, H5, and H6, and T16 CH3. Minor groove NOEs were observed between H1, H2, and H3 of benzo[a]pyrene and T16 H1' and H2' and T17 H1' and H2'. The benzo[a]pyrene protons H10, H11, and H12 showed NOEs to A6 H1', H2', and H2". The chemical shifts of the pyrenyl moiety were dispersed over a 1.9 ppm range. Upfield chemical shifts of 2.4 ppm for T16 N3H, 1.1 ppm for T17 N3H, 1.3 and 1.0 ppm for T16 H6 and CH3, 0.85 ppm for T16 H1', and 0.80 and 0.90 ppm for C15 H2' and H2" were observed. These observations were consistent with intercalation of the pyrenyl moiety toward the 5' direction of SRSRA7. The results were compared to the isomeric SRSR(61,2) adduct [I. S. Zegar, S. J. Kim, T. N. Johansen, P. J. Horton, C. M. Harris, T. M. Harris, and M. P. Stone (1996) Biochemistry 35, 6212-6224] and revealed the role of DNA sequence in modulating the conformation of this benzo[a]pyrene adduct.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide / chemistry
  • Adenine / analogs & derivatives*
  • Adenine / chemistry
  • Base Sequence
  • Benzo(a)pyrene / chemistry
  • Codon / chemistry*
  • DNA / chemistry
  • DNA / genetics
  • DNA Adducts / chemistry*
  • Genes, ras*
  • Humans
  • Intercalating Agents / chemistry*
  • Nuclear Magnetic Resonance, Biomolecular
  • Nucleic Acid Conformation*
  • Oligodeoxyribonucleotides / chemistry
  • Oligodeoxyribonucleotides / genetics
  • Protons

Substances

  • Codon
  • DNA Adducts
  • Intercalating Agents
  • Oligodeoxyribonucleotides
  • Protons
  • alpha-(N6-adenyl)styrene oxide-DNA adduct
  • Benzo(a)pyrene
  • 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide
  • DNA
  • Adenine