Cellular basis for the normal T wave and the electrocardiographic manifestations of the long-QT syndrome

Circulation. 1998 Nov 3;98(18):1928-36. doi: 10.1161/01.cir.98.18.1928.

Abstract

Background: This study probes the cellular basis for the T wave under baseline and long-QT (LQT) conditions using an arterially perfused canine left ventricular (LV) wedge preparation, which permits direct temporal correlation of cellular transmembrane and ECG events.

Methods and results: Floating microelectrodes were used to record transmembrane action potentials (APs) simultaneously from epicardial, M-region, and endocardial sites or subendocardial Purkinje fibers. A transmural ECG was recorded concurrently. Under baseline and LQT conditions, repolarization of the epicardial action potential, the earliest to repolarize, coincided with the peak of the T wave; repolarization of the M cells, the last to repolarize, coincided with the end of the T wave. Thus, the action potential duration (APD) of the longest M cells determine the QT interval and the Tpeak-Tend interval serves as an index of transmural dispersion of repolarization. Repolarization of Purkinje fibers outlasted that of the M cell but failed to register on the ECG. The morphology of the T wave appeared to be due to currents flowing down voltage gradients on either side of the M region during phase 2 and phase 3 of the ventricular action potential. The interplay between these opposing forces determined the height of the T wave as well as the degree to which the ascending or descending limb of the T wave was interrupted, giving rise to bifurcated T waves and "apparent T-U complexes" under LQT conditions. Spontaneous and stimulation-induced polymorphic ventricular tachycardia with characteristics of torsade de pointes (TdP) developed in the presence of dl-sotalol.

Conclusions: Our results provide the first direct evidence that opposing voltage gradients between epicardium and the M region and endocardium and the M region contribute prominently to the inscription of the ECG T wave under normal conditions and to the widened or bifurcated T wave and long-QT interval observed under LQT conditions. Our data suggest that the "pathophysiological U" wave observed in acquired or congenital LQTS is more likely to be a second component of an interrupted T wave, and argue for use of the term T2 in place of U to describe this event.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 4-Aminopyridine / pharmacology
  • Action Potentials / drug effects
  • Animals
  • Anti-Arrhythmia Agents / pharmacology
  • Dogs
  • Electrocardiography*
  • Endocardium / physiopathology
  • Hypokalemia / physiopathology
  • Long QT Syndrome / pathology*
  • Long QT Syndrome / physiopathology*
  • Myocardium / pathology*
  • Pericardium / physiopathology
  • Purkinje Fibers / physiopathology
  • Sotalol / pharmacology
  • Torsades de Pointes / chemically induced
  • Torsades de Pointes / physiopathology

Substances

  • Anti-Arrhythmia Agents
  • Sotalol
  • 4-Aminopyridine