Epidermal iontophoresis: I. Development of the ionic mobility-pore model

Pharm Res. 1998 Oct;15(10):1569-78. doi: 10.1023/a:1011907201096.

Abstract

Purpose: An integrated ionic mobility-pore model for epidermal iontophoresis is developed from theoretical considerations using both the free volume and pore restriction forms of the model for a range of solute radii (rj) approaching the pore radii (rp) as well as approximation of the pore restriction form for rj/rp < 0.4. In this model, we defined the determinants for iontophoresis as solute size (defined by MV, MW or radius), solute mobility, solute shape, solute charge, the Debye layer thickness, total current applied solute concentration, fraction ionized, presence of extraneous ions (defined by solvent conductivity), epidermal permselectivity, partitioning rates to account for interaction of unionized and ionized lipophilic solutes with the wall of the pore and electroosmosis.

Methods: The ionic mobility-pore model was developed from theoretical considerations to include each of the determinants of iontophoretic transport. The model was then used to reexamine iontophoretic flux conductivity and iontophoretic flux-fraction ionized literature data on the determinants of iontophoretic flux.

Results: The ionic mobility-pore model was found to be consistent with existing experimental data and determinants defining iontophoretic transport. However, the predicted effects of solute size on iontophoresis are more consistent with the pore-restriction than free volume form of the model. A reanalysis of iontophoretic flux-conductivity data confirmed the model's prediction that, in the absence of significant electroosmosis, the reciprocal of flux is linearly related to either donor or receptor solution conductivity. Significant interaction with the pore walls, as described by the model, accounted for the reported pH dependence of the iontophoretic transport for a range of ionizable solutes.

Conclusions: The ionic mobility-pore iontophoretic model developed enables a range of determinants of iontophoresis to be described in a single unifying equation which recognises a range of determinants of iontophoretic flux.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biological Transport
  • Humans
  • Iontophoresis*
  • Molecular Weight
  • Skin / metabolism*