Training-induced alterations of carbohydrate metabolism in women: women respond differently from men

J Appl Physiol (1985). 1998 Sep;85(3):1175-86. doi: 10.1152/jappl.1998.85.3.1175.

Abstract

We examined the hypothesis that glucose flux was directly related to relative exercise intensity both before and after a 12-wk cycle ergometer training program [5 days/wk, 1-h duration, 75% peak O2 consumption (VO2 peak)] in healthy female subjects (n = 17; age 23.8 +/- 2.0 yr). Two pretraining trials (45 and 65% of VO2 peak) and two posttraining trials [same absolute workload (65% of old VO2 peak) and same relative workload (65% of new VO2 peak)] were performed on nine subjects by using a primed-continuous infusion of [1-13C]- and [6,6-2H]glucose. Eight additional subjects were studied by using [6, 6-2H]glucose. Subjects were studied postabsorption for 90 min of rest and 1 h of cycling exercise. After training, subjects increased VO2 peak by 25.2 +/- 2.4%. Pretraining, the intensity effect on glucose kinetics was evident between 45 and 65% of VO2 peak with rates of appearance (Ra: 4.52 +/- 0.25 vs. 5.53 +/- 0.33 mg . kg-1 . min-1), disappearance (Rd: 4.46 +/- 0.25 vs. 5.54 +/- 0.33 mg . kg-1 . min-1), and oxidation (Rox: 2.45 +/- 0.16 vs. 4.35 +/- 0.26 mg . kg-1 . min-1) of glucose being significantly greater (P </= 0.05) in the 65% than in the 45% trial. Training reduced Ra (4.7 +/- 0.30 mg . kg-1 . min-1), Rd (4.69 +/- 0.20 mg . kg-1 . min-1), and Rox (3.54 +/- 0.50 mg . kg-1 . min-1) at the same absolute workload (P </= 0. 05). When subjects were tested at the same relative workload, Ra, Rd, and Rox were not significantly different after training. However, at both workloads after training, there was a significant decrease in total carbohydrate oxidation as determined by the respiratory exchange ratio. These results show the following in young women: 1) glucose use is directly related to exercise intensity; 2) training decreases glucose flux for a given power output; 3) when expressed as relative exercise intensity, training does not affect the magnitude of blood glucose flux during exercise; but 4) training does reduce total carbohydrate oxidation.

Publication types

  • Clinical Trial
  • Comparative Study
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adolescent
  • Adult
  • Blood Glucose / metabolism
  • Body Composition / physiology
  • Carbohydrate Metabolism*
  • Exercise / physiology
  • Female
  • Hormones / blood
  • Humans
  • Lactic Acid / blood
  • Male
  • Menstruation / physiology
  • Oxygen Consumption / physiology
  • Physical Fitness / physiology*
  • Sex Characteristics

Substances

  • Blood Glucose
  • Hormones
  • Lactic Acid