Contribution of the autonomic nervous system to blood pressure and heart rate variability changes in early experimental hyperthyroidism

Eur J Pharmacol. 1998 Jul 10;352(2-3):247-55. doi: 10.1016/s0014-2999(98)00368-9.

Abstract

A great deal of uncertainty persists regarding the exact nature of the interaction between autonomic nervous system activity and thyroid hormones in the control of heart rate and blood pressure. We now report on thyrotoxicosis produced by daily intraperitoneal (i.p.) injection of L-thyroxine (0.5 mg/kg body wt. in 1 ml of 5 mM NaOH for 5 days). Control rats received i.p. daily injections of the thyroxine solvent. In order to estimate the degree of autonomic activation in hyperthyroidism, specific blockers were administered intravenously: atropine (0.5 mg/kg), prazosin (1 mg/kg), atenolol (1 mg/kg) or the combination of atenolol and atropine. A jet of air was administered in other animals to induce sympathoactivation. Eight animals were studied in each group. The dose and duration of L-thyroxine treatment was sufficient to induce a significant degree of hyperthyroidism with accompanying tachycardia, systolic blood pressure elevation, increased pulse pressure, cardiac hypertrophy, weight loss, tachypnea and hyperthermia. In addition, the intrinsic heart period observed after double blockade (atenolol + atropine) was markedly decreased after treatment with L-thyroxine (121.5+/-3.6 ms vs. 141.2+/-3.7 ms, P < 0.01). Of the autonomic indices, vagal tone (difference between heart period obtained after atenolol and intrinsic heart period) was negatively linearly related to intrinsic heart period (r = 0.71, P < 0.05). Atenolol modified neither the heart period nor blood pressure variability in rats with hyperthyroidism and in these rats the jet of air did not significantly affect the heart period level. The thyrotoxicosis was associated with a reduction of the 0.4 Hz component of blood pressure variability (analyses on 102.4 s segments, modulus 1.10+/-0.07 vs. 1.41+/-0.06 mm Hg, P < 0.01) and prazosin was without effect on this 0.4 Hz component in these animals. These data show a functional diminution of the vascular and cardiac sympathetic tone in early experimental hyperthyroidism. The marked rise in the intrinsic heart rate could be the main determinant of tachycardia. The blood pressure elevation may reflexly induce vagal activation and sympathetic (vascular and cardiac) inhibition.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adrenergic alpha-Antagonists / pharmacology
  • Adrenergic beta-Antagonists / pharmacology
  • Animals
  • Atenolol / pharmacology
  • Atropine / pharmacology
  • Autonomic Nervous System / drug effects
  • Autonomic Nervous System / physiopathology*
  • Blood Pressure / drug effects
  • Blood Pressure / physiology*
  • Heart Rate / drug effects
  • Heart Rate / physiology*
  • Hyperthyroidism / physiopathology*
  • Male
  • Prazosin / pharmacology
  • Rats
  • Rats, Wistar
  • Stress, Physiological
  • Thyroxine / administration & dosage

Substances

  • Adrenergic alpha-Antagonists
  • Adrenergic beta-Antagonists
  • Atenolol
  • Atropine
  • Thyroxine
  • Prazosin