Contribution of retinoic acid receptor beta isoforms to the formation of the conotruncal septum of the embryonic heart

Dev Biol. 1998 Jun 15;198(2):303-18.

Abstract

To investigate the relative contribution of retinoic acid receptor (RAR)beta isoforms in conotruncal septation, RAR beta 1 and beta 3 were inactivated in the mouse. Mice lacking RAR beta 1 and beta 3 appear normal. Disruption of these isoforms in RAR alpha or RAR gamma null genetic backgrounds results in a high postpartum lethality. However, except for ocular defects found in RAR beta 1-3/RAR gamma compound mutants, the double null mutants display only abnormalities seen in single null mutants. This probably reflects a functional redundancy with other RARs, most notably with RAR beta 2 which is five- to sixfold more abundant than RAR beta 1 and beta 3 and whose domain of expression is largely overlapping. The conotruncal ridges form normally in retinoid X receptor (RXR)alpha/RAR beta compound mutants but fail to fuse, apparently as a result of excessive apoptosis of mesenchymal cells. Additionally, many cardiomyocytes in the conotruncal wall of these mutants appear necrotic. Although RAR beta 1 and beta 3 are expressed specifically in the conotruncal ridges, failure of fusion of these structures is not more frequent in RXR alpha/RAR beta 1-3 double null mutants than in RXR alpha single null mutants. Similarly, the disruption of the sole RAR beta 2 isoform in a RXR alpha null genetic background does not result in an increase of the frequency of conotruncal septum agenesis. However, this agenesis is fully penetrant in RXR alpha/RAR beta +/- mutants, which reflects distinct role of RXR alpha:RAR beta 1 (and beta 3) and RXR alpha:RAR beta 2 heterodimers in promoting the survival of conotruncal mesenchymal cells. Unexpectedly, we discovered that, in wild-type embryos, the conotruncal mesenchyme is a major site of morphogenetic cell death and that conotruncal myocytes are occasionally necrotic. Thus, excessive cell death in the conotruncus is a potential cause of ventricular septal defects in humans.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Death
  • Female
  • Heart Septal Defects / embryology
  • Heart Septum / embryology*
  • Mice
  • Mice, Inbred C57BL
  • Morphogenesis
  • Pregnancy
  • Receptors, Retinoic Acid / genetics
  • Receptors, Retinoic Acid / physiology*
  • Tretinoin / pharmacology

Substances

  • Receptors, Retinoic Acid
  • retinoic acid receptor beta
  • Tretinoin