Resonance raman characterization of reaction centers with an Asp residue near the photoactive bacteriopheophytin

Biochemistry. 1998 May 5;37(18):6394-401. doi: 10.1021/bi972410e.

Abstract

Qy-excitation resonance Raman (RR) studies are reported for a series of Rhodobacter capsulatus reaction centers (RCs) containing mutations at L-polypeptide residue 121 near the photoactive bacteriopheophytin (BPhL). The studies focus on the electronic/structural perturbations of BPhL induced by replacing the native Phe with an Asp residue. Earlier work has shown that the electron-transfer properties of F(L121)D RCs are closely related to those of RCs in which BPhL is replaced by bacteriochlorophyll (BChl) (beta-type RCs) or by pheophytin. In addition to the F(L121)D single mutant, RR studies were performed on the F(L121)D/E(L104)L double mutant, which additionally removes the hydrogen bond between BPhL and the native Glu L104 residue. The vibrational signatures of BPhL in the single and double mutants containing Asp L121 are compared with one another and with those of BPhL in both wild-type and F(L121)L RCs. The replacement of the aromatic Phe residue with Leu has no discernible effect on the vibrational properties of BPhL, a finding in concert with the previously reported absence of an effect of the mutation on the electron-transfer characteristics of the RC. In contrast, replacement of Phe with Asp significantly perturbs the vibrational characteristics of BPhL, and in a manner most consistent with Asp L121 being deprotonated and negatively charged. The negative charge of the carboxyl group of Asp L121 interacts with the pi-electron system of BPhL in a relatively nonspecific fashion, diminishing the contribution of charge-separated resonance forms of the C9-keto group to the electronic structure of the cofactor. The presence of a negative charge near BPhL is consistent with the known photochemistry of F(L121)D RCs, which indicates that the free energy of P+BPhL- is substantially higher than in wild-type RCs.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Aspartic Acid / chemistry*
  • Light-Harvesting Protein Complexes
  • Models, Chemical
  • Pheophytins / chemistry*
  • Photosynthetic Reaction Center Complex Proteins / chemistry*
  • Rhodobacter capsulatus
  • Spectrum Analysis, Raman

Substances

  • Light-Harvesting Protein Complexes
  • Pheophytins
  • Photosynthetic Reaction Center Complex Proteins
  • bacteriopheophytin
  • Aspartic Acid