[Functions of the transforming growth factor-beta superfamily in eyes]

Nippon Ganka Gakkai Zasshi. 1997 Dec;101(12):927-47.
[Article in Japanese]

Abstract

One human body is composed of 6 x 10(13) cells, and eyes are also composed of many cells of different functions. The cellular functions and intercellular interaction are regulated by many regulators including cytokines and growth factors to maintain the homeostasis. The transforming growth factor-beta (TGF-beta) superfamily, a large family of multifunctional factors, regulates various cellular functions, including cellular proliferation, migration, differentiation, apoptosis and extracellular matrix production. The TGF-beta superfamily contains about 30 multifunctional factors, and is divided into several families according to the sequence homology. The TGF-beta family, the activin family, and bone morphogenic proteins belong to the TGF-beta superfamily. TGF-beta superfamily members transduce signals through type I and type II serine/threonine type transmembrane receptors. The signals are transduced from receptors through nuclei by Smad family members, which are phosphorylated by the activated type I receptors and translocate from cytoplasm into nuclei. TGF-beta family members and the TGF-beta superfamily receptor family are expressed in ocular tissues including the cornea, ciliary epithelium, lens epithelium, retina, and blood vessels. This observation suggests the importance of the TGF-beta superfamily in eyes. Smad family members (Smad 1, Smad 2, Smad 3 and Smad 4) are expressed in the cultured retinal pigmant epithelial cell line (D407), in which TGF-beta and activin A stimulate the translocation of Smad 2, but not Smad 1 into nuclei, whereas bone morphogenetic protein (BMP) stimulates that of Smad 1, but not Smad 2. TGF-beta superfamily members play important roles in the pathogenesis of retinal neovascularization and in the wound healing process of corneal tissue. TGF-beta inhibits the endothelial functions, but, stimulates angiogenesis in vivo. TGF-beta is involved in the formation of abnormal connective tissue in corneal wound healing. In these processes, many cytokines and growth factors are involved, interacting with each other and forming networks. It is mandatory to clarify the networks to investigate molecular pathogenesis and new therapeutic agents.

Publication types

  • English Abstract
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Diabetic Retinopathy / metabolism
  • Eye / cytology*
  • Humans
  • Receptors, Transforming Growth Factor beta / analysis
  • Signal Transduction / physiology
  • Transforming Growth Factor beta / physiology*

Substances

  • Receptors, Transforming Growth Factor beta
  • Transforming Growth Factor beta