Signal transduction pathway of the induction of cell motility in hamster pancreatic ductal adenocarcinoma cell

Invasion Metastasis. 1997;17(1):16-25.

Abstract

Recently, we reported that low (PC-1)- and high-invasive cell lines (PC-1.0) were established on the basis of hamster pancreatic ductal adenocarcinomas, and PC-1.0 cells were secreting the dissociation factor in the supernatant (DF-CM) which induced cell dissociation and enhancement of cell motility. The cell motility of PC-1.0 is about 6 times as high as that of PC-1, which was continuously maintained in an autocrine fashion by DF-CM. In contrast, cell motility of PC-1 was rapidly induced by DF-CM with a high level of induction of endogenous c-fos mRNA and returned to a basal level within 6 h. The inhibition experiment using antisense oligonucleotides to c-fos indicated that the high level of induction of c-fos mRNA observed in the DF-CM-treated PC-1 cells was closely associated with their induction of cell motility. To elucidate these differences of responses against DF-CM between PC-1 and PC-1.0, signal transduction pathways of induction of the cell motilities were analyzed, using protein kinase C (PKC) inhibitor, 12-O-tetradecanoylphorbol-13-acetate, cyclic AMP antagonist, and cyclic AMP agonist. The transiently enhanced cell motility of DF-CM-treated PC-1 cells was completely inhibited by the cyclic AMP antagonist, and the cyclic AMP agonist was able to induce a similar pattern of induction of cell motility in PC-1 cells to DF-CM. On the other hand, the highly enhanced cell motility of PC-1.0 was completely inhibited by protein kinase C inhibitor, but not by cyclic AMP antagonist. These results suggest that cell motility of low-invasive PC-1 cells is under control through cyclic AMP-dependent protein kinase A, while the protein kinase C pathway seems favorable for high-invasive PC-1.0 cells to maintain the continuously enhanced cell motility responsible for their high invasiveness.

Publication types

  • Comparative Study

MeSH terms

  • Adenocarcinoma / drug therapy
  • Adenocarcinoma / metabolism*
  • Adenocarcinoma / pathology
  • Animals
  • Cell Movement / drug effects
  • Cell Movement / physiology*
  • Cricetinae
  • Culture Media, Conditioned / pharmacology
  • Gene Expression Regulation, Neoplastic
  • Genes, fos
  • Neoplasm Invasiveness
  • Oligonucleotides, Antisense / pharmacology
  • Pancreatic Ducts / pathology
  • Pancreatic Neoplasms / drug therapy
  • Pancreatic Neoplasms / metabolism*
  • Pancreatic Neoplasms / pathology
  • Signal Transduction*
  • Tumor Cells, Cultured

Substances

  • Culture Media, Conditioned
  • Oligonucleotides, Antisense