[Noise in intensive care units. Noise reduction by modification of gas humidification]

Anaesthesist. 1997 Oct;46(10):856-9. doi: 10.1007/s001010050479.
[Article in German]

Abstract

Today, noise pollution is an evident and ubiquitous problem even in intensive care units. Noise can disturb the physiological and psychological balance in patients and staff. Especially intubated patients and those breathing spontaneously through a T-piece are exposed to the noise emitted by the nebuliser used to humidity the respiratory gas. This may make patients feel uncomfortable. To reduce noise pollution in the ICU a modified T-piece has been developed and investigated. In order to heat and humidity the respiratory gas a Conchaterm III unit (Kendall company) and a thermo flow cylinder (De Vilbiss company) is necessary. While respiratory gas is flowing, water is sucked out of the heated thermoflow cylinder and nebulised according to the Venturi-Bernoulli principle. To adjust the oxygen concentration of the respiratory gas a plastic ring must be turned to either close (98% oxygen) or open a valve allowing room air to mix (40% oxygen). Noise pollution of the unit varies with admixture of room air. With a new device--a special oxygen-air mixing chamber--the oxygen concentration of the respiratory gas can be adjusted outside the thermoflow cylinder, hardly producing any noise pollution. Therefore the principle of nebulisation could be changed to humidification. A thermoflow cylinder without the nebulisation unit allows the respiratory gas to flow through the thermoflow cylinder over heated and evaporating water, hardly causing any noise pollution. In both types of T-pieces the temperature of the respiratory gas is controlled and corrected by the Conchaterm unit. As the result of these modifications, noise pollution has been reduced from 70 dB(A) to 55 dB(A). In the modified T-piece, the quality of humidification has been evaluated with a fresh gas flow of 22 l/min and at a gas temperature of 37 degrees C, not only collecting condensed water but also lost water. The modified T-piece allows a physiological humidification of the respiratory gas. The modified T-piece is a simple and efficacious substitute. Patients and staff are protected from adverse noise effects and patient well-being might be improved.

Publication types

  • English Abstract

MeSH terms

  • Humans
  • Humidity
  • Intensive Care Units / organization & administration*
  • Nebulizers and Vaporizers*
  • Noise / adverse effects*
  • Noise / prevention & control*