Melatonin and the circadian regulation of sleep initiation, consolidation, structure, and the sleep EEG

J Biol Rhythms. 1997 Dec;12(6):627-35. doi: 10.1177/074873049701200618.

Abstract

The endogenous circadian rhythm of melatonin, driven by the suprachiasmatic nucleus, exhibits a close association with the endogenous circadian component of the sleep propensity rhythm and the endogenous circadian component of the variation in electroencephalogram (EEG) oscillations such as sleep spindles and slow waves. This association is maintained even when the sleep-wake cycle is desynchronized from the endogenous circadian rhythm of melatonin. Administration of melatonin during the day increases daytime sleep propensity as indexed by both the latency to sleep onset and sleep consolidation. The EEG during daytime sleep after melatonin administration exhibits characteristics reminiscent of the nocturnal sleep EEG, that is, increased sleep spindle activity and reduced slow-wave sleep and slow-wave activity, as detected by quantitative EEG analysis. Administration of higher doses of melatonin (5 mg or more) prior to nocturnal sleep results in an increase in rapid eye movement (REM) sleep. These data demonstrate that melatonin exerts effects on the main characteristics of human sleep, that is, latency to sleep onset, sleep consolidation, slow waves, sleep spindles, and REM sleep. There is a need for further studies using physiological doses and delivery systems that generate physiological plasma melatonin profiles to firmly establish the role of the endogenous circadian rhythm of melatonin in the circadian regulation of sleep.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Circadian Rhythm / drug effects*
  • Electroencephalography / drug effects*
  • Humans
  • Melatonin / pharmacology*
  • Sleep / drug effects*
  • Sleep / physiology

Substances

  • Melatonin