Identification of an intramolecular interaction between small regions in type V adenylyl cyclase that influences stimulation of enzyme activity by Gsalpha

Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9602-7. doi: 10.1073/pnas.94.18.9602.

Abstract

Using the full-length and two engineered soluble forms (C1-C2 and Cla-C2) of type V adenylyl cyclase (ACV), we have investigated the role of an intramolecular interaction in ACV that modulates the ability of the alpha subunit of the stimulatory GTP-binding protein of AC (Gsalpha) to stimulate enzyme activity. Concentration-response curves with Gsalpha suggested the presence of high and low affinity sites on ACV, which interact with the G protein. Activation of enzyme by Gsalpha interaction at these two sites was most apparent in the C1a-C2 form of ACV, which lacks the C1b region (K572-F683). Yeast two-hybrid data demonstrated that the C1b region interacted with the C2 region and its 64-aa subdomain, C2I. Using peptides corresponding to the C2I region of ACV, we investigated the role of the C1b/C2I interaction on Gsalpha-mediated stimulation of C1-C2 and full-length ACV. Our data demonstrate that a 10-aa peptide corresponding to L1042-T1051 alters the profile of the activation curves of full-length and C1-C2 forms of ACV by different Gsalpha concentrations to mimic the activation profile observed with C1a-C2 ACV. The various peptides used in our studies did not alter forskolin-mediated stimulation of full-length and C1-C2 forms of ACV. We conclude that the C1b region of ACV interacts with the 10-aa region (L1042-T1051) in the C2 domain of the enzyme to modulate Gsalpha-elicited stimulation of activity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenylyl Cyclases / chemistry
  • Adenylyl Cyclases / metabolism*
  • Amino Acid Sequence
  • Enzyme Activation
  • Escherichia coli
  • GTP-Binding Proteins / metabolism*
  • Molecular Sequence Data
  • Protein Binding
  • Recombinant Proteins / chemistry

Substances

  • Recombinant Proteins
  • GTP-Binding Proteins
  • Adenylyl Cyclases