Concentrations of biogenic amines in fundal layers in chickens with normal visual experience, deprivation, and after reserpine application

Vis Neurosci. 1997 May-Jun;14(3):493-505. doi: 10.1017/s0952523800012153.

Abstract

Previous experiments in chickens have shown that dopamine released from the retina may be one of the messengers controlling the growth of the underlying sclera. It is also possible, however, that the apparent relationship between dopamine and myopia is secondary and artifactual. We have done experiments to assess this hypothesis. Using High Pressure Liquid Chromatography with electrochemical detection (HPLC-ED), we have asked whether changes in dopamine metabolism are restricted to the local retinal regions in which myopia was locally induced. Furthermore, we have measured the concentrations of biogenic amines separately in different fundal layers (vitreous, retina, choroid, and sclera) to find out how changes induced by "deprivation" (= removal of high spatial frequencies from the retinal image by translucent eye occluders which produce "deprivation myopia") are transmitted through these layers. Finally, we have repeated the deprivation experiments after intravitreal application of the irreversible dopamine re-uptake blocker reserpine to see how suppression of dopaminergic transmission affects these changes. We found that (1) Alterations in retinal dopamine metabolism were indeed restricted to the retinal areas in which myopia was induced. (2) The retina was the major source of dopamine release with a steep gradient both to the vitreal and choroidal side. Vitreal content was about one-tenth, choroidal content about one-third, and scleral content about one-twentieth of that of the retina. (3) There was a drop by about 40% in vitreal dopamine, DOPAC (3,4-dihydroxyphenylacetic acid) and HVA (homovanilic acid) concentrations following deprivation which occurred already at a time where little changes could yet be seen in their total retinal contents. (4) Choroidal and scleral dopamine levels were not affected by deprivation, indicating that other messengers must relay the information to the sclera. (5) A single intravitreal injection of reserpine lowered dopamine and HVA levels in retina and vitreous for at least 10 days in a dose-dependent fashion and diminished or suppressed further effects of deprivation on these compounds. DOPAC levels continued to change upon deprivation even after reserpine injection (Fig. 3). Our results suggest that the release rates of dopamine from retinal amacrine cells can be estimated from vitreal dopamine concentrations; furthermore, they are in line with the hypothesis that there is an inverse relationship between dopamine release and axial eye growth rates. Although our experiments do not ultimately prove that dopamine has a functional role in the visual control of eye growth, they are in line with this notion.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3,4-Dihydroxyphenylacetic Acid / metabolism
  • Animals
  • Biogenic Amines / metabolism*
  • Chickens
  • Dopamine / metabolism
  • Fundus Oculi*
  • Homovanillic Acid / metabolism
  • Male
  • Myopia / physiopathology*
  • Reference Values
  • Refraction, Ocular
  • Reserpine / pharmacology*
  • Sensory Deprivation / physiology*
  • Serotonin / metabolism
  • Vision, Ocular / physiology*
  • Vitreous Body / drug effects
  • Vitreous Body / metabolism

Substances

  • Biogenic Amines
  • 3,4-Dihydroxyphenylacetic Acid
  • Serotonin
  • Reserpine
  • Dopamine
  • Homovanillic Acid