Electron transfer to cytochrome P-450scc limits cholesterol-side-chain-cleavage activity in the human placenta

Eur J Biochem. 1997 Mar 15;244(3):835-9. doi: 10.1111/j.1432-1033.1997.00835.x.

Abstract

The aim of this study was to determine whether electron transfer from adrenodoxin reductase and adrenodoxin limits the activity of cytochrome P-450scc in mitochondria from the human placenta. Mitochondria were disrupted by sonication to enable exogenous adrenodoxin and adrenodoxin reductase to deliver electrons to cytochrome P-450scc. After sonication, the rate of pregnenolone synthesis was greatly decreased relative to that by intact mitochondria, due to dilution of endogenous adrenodoxin and adrenodoxin reductase into the incubation medium. The addition of saturating concentrations of bovine or human adrenodoxin and bovine adrenodoxin reductase to the disrupted mitochondria gave an initial rate of pregnenolone synthesis that was 6.3-fold higher than that for intact mitochondria. Similar results were observed when 20alpha-hydroxycholesterol was used as substrate rather than endogenous cholesterol. The turnover number of cytochrome P-450scc in sonicated placental mitochondria supplemented with adrenodoxin and adrenodoxin reductase was comparable to that for the purified enzyme assayed under conditions where electron transfer was not limiting. Addition of exogenous adrenodoxin and adrenodoxin reductase to sonicated mitochondria from the pig corpus luteum and rat adrenal had a much smaller effect on pregnenolone synthesis compared with intact mitochondria, than observed for the placenta. We conclude that in the human placenta, electron transfer to cytochrome P-450scc is limiting, permitting pregnenolone synthesis to proceed at only 16% maximum velocity.

MeSH terms

  • Adrenodoxin / metabolism
  • Adrenodoxin / pharmacology
  • Animals
  • Cattle
  • Cholesterol / metabolism*
  • Cholesterol Side-Chain Cleavage Enzyme / metabolism*
  • Electron Transport / drug effects
  • Female
  • Ferredoxin-NADP Reductase / metabolism
  • Ferredoxin-NADP Reductase / pharmacology
  • Humans
  • In Vitro Techniques
  • Mitochondria / drug effects
  • Mitochondria / metabolism
  • Placenta / drug effects
  • Placenta / metabolism*
  • Pregnancy
  • Pregnenolone / biosynthesis
  • Rats
  • Sonication
  • Swine

Substances

  • Adrenodoxin
  • Pregnenolone
  • Cholesterol
  • Cholesterol Side-Chain Cleavage Enzyme
  • Ferredoxin-NADP Reductase