Bone-bonding behavior of plasma-sprayed coatings of BioglassR, AW-glass ceramic, and tricalcium phosphate on titanium alloy

J Biomed Mater Res. 1996 Feb;30(2):261-9. doi: 10.1002/(SICI)1097-4636(199602)30:2<261::AID-JBM17>3.0.CO;2-P.

Abstract

The bone-bonding behavior of three kinds of bioactive ceramics coated on titanium alloy by the plasma-spray technique was investigated. Titanium alloy (Ti-6A1-4V) coated with BioglassR (45S5), apatite-wollastonite containing glass ceramic (AW), or beta-tricalcium phosphate (TCP) was prepared, and rectangular specimens were implanted into the tibial bones of mature male rabbits, which were sacrificed 8 or 24 weeks after implantation. The tibiae containing the implants were dissected out and subjected to detachment tests to measure the failure load. The bone-implant interface was investigated by Giemsa surface staining, contact microradiography, and scanning electron microscopy-electron probe microanalysis (SEM-EPMA). Eight weeks after implantation, the failure loads for implants coated with BioglassR, AW, and TCP were 1.04 +/- 0.94, 2.03 +/- 1.17, and 3.91 +/- 1.51 kg, respectively, and 24 weeks after implantation, the respective failure loads were 2.72 +/- 1.33, 2.39 +/- 1.30, and 4.23 +/- 1.34 kg. Failure loads of AW- and TCP-coated implants did not increase significantly with time. After the detachment test, breakage of the coating layer was observed. Bioactive ceramics can act as stimulants that induce bonding between bone and metal implants. However, failure load of metal implants coated with the bioactive ceramics was lower than that of bulk AW or TCP. It appears impossible to obtain a higher failure load using a bioactive-ceramic coating on titanium alloy. Histologically, the coating layer was found to become detached from the metal implant and the bone tissue bonded to the coating layer. SEM-EPMA observation revealed breakage of the coating layer, although bonding between bone and the coating layer was evident. A Ca-P-rich layer was observed at the interface between bone and the AW coating, and a Ca-P-rich and a Si-rich layer were observed at the interface between bone and the BioglassR coating. For clinical application, it would seem better to use coated metal implants for short-term implantation. However, there is a possibility of breakage of the coating layer because of both dissolution of the bioactive ceramic and mechanical weakness at the interface between the coating layer and the metal implant.

MeSH terms

  • Alloys
  • Animals
  • Biocompatible Materials*
  • Bone Development / physiology*
  • Bone and Bones / anatomy & histology
  • Calcium Phosphates* / chemistry
  • Ceramics* / chemistry
  • Electron Probe Microanalysis
  • Microscopy, Electron, Scanning
  • Prostheses and Implants
  • Rabbits
  • Titanium*
  • X-Ray Diffraction

Substances

  • Alloys
  • Biocompatible Materials
  • Bioglass
  • Calcium Phosphates
  • alpha-tricalcium phosphate
  • tetracalcium phosphate
  • titanium alloy (TiAl6V4)
  • calcium phosphate, monobasic, anhydrous
  • calcium phosphate
  • Titanium
  • calcium phosphate, dibasic, anhydrous