Greater initial adaptations to submaximal muscle lengthening than maximal shortening

J Appl Physiol (1985). 1996 Oct;81(4):1677-82. doi: 10.1152/jappl.1996.81.4.1677.

Abstract

The purpose of this study was to compare the short-term strength and neural adaptations to eccentric and concentric training at equal force levels. Forty-two sedentary women (age = 21.5 yr) were ranked based on the initial quadriceps strength score, and trios of subjects were randomly assigned to either an eccentric (n = 14), a concentric (n = 14), or a nonexercising control group (n = 14). Training involved a total of 824 eccentric or concentric quadriceps actions at 1.05 rad.s-1 administered in four sets of 6-10 repetitions, four times per week for 6 wk. Before and after training, all subjects were tested for unilateral maximal isometric and eccentric and concentric actions at 1.05 rad.s-1 and for a 40-repetition eccentric and concentric fatigue series of the left and right quadriceps. Surface electromyographic activity of the vastus lateralis and medialis was monitored during testing. Concentric training increased concentric (36%, P < 0.05), isometric (18%, P < 0.05), and eccentric strength (13%), and eccentric training increased eccentric (42%, P < 0.05), isometric (30%, P < 0.05), and concentric (13%) strength. Eccentric training improved eccentric and isometric strength more (P < 0.05) than did concentric training. The electromyographic adaptations were greater with eccentric training. Cross-education was 6%, and neither training mode modified fatigability. The data suggest that training of the quadriceps muscle with submaximal eccentric actions brings about greater strength adaptations faster than does training with maximal-level concentric actions in women. This greater adaptation is likely to be mediated by both mechanical and neural factors.

Publication types

  • Clinical Trial
  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adaptation, Physiological / physiology*
  • Adult
  • Electromyography
  • Exercise
  • Female
  • Humans
  • Muscle Fatigue / physiology*
  • Muscle, Skeletal / physiology*
  • Physical Fitness*