Diurnal pattern of sodium excretion in dogs with and without chronically reduced renal perfusion pressure

Kidney Blood Press Res. 1996;19(1):16-23. doi: 10.1159/000174041.

Abstract

In 5 conscious dogs the diurnal patterns of urinary sodium excretion (UNaV) were investigated, initially during 1 control day and, thereafter, during 4 days of servo-controlled reduction of renal perfusion pressure (rRPP). The individual dog's mean arterial blood pressure was reduced to 80% of the blood pressure on the control day. This value was always found to be below the threshold for the pressure-dependent renin release. During the entire study period urine was collected in 4-hour intervals and blood samples were taken every 4 h. The dogs were kept on a standardized high sodium and high water intake and were fed once daily at 8.30 h. On the control day, UNaV, urinary flow rate (UV), fractional lithium excretion (FELi) and fractional sodium excretion (FENa) had similar diurnal patterns. They peaked 4-8 h after food intake and decreased to low values during the night. On day 1 of rRPP, UNaV and FENa were maintained at very low levels in all collection periods, whereas the patterns of UV and FELi were unaltered compared with the patterns on the control day. On days 2-4 of rRPP, a clear-cut maximum in the patterns of UNaV and FENa recurred, comparable with the patterns on the control day. However, compared with the control day this maximum was shifted by 4 h towards the night. In contrast, the patterns of UV and FELi remained unchanged compared with the control day. The results indicate that UNaV has a typical time course in conscious, sodium- and water-replete dogs fed once daily. Endogenous stimulation of sodium reabsorption by means of rRPP results in a characteristic 4-hour shift of UNaV and FENa towards the night during rRPP days 2-4. This delay in UNaV seems to be evoked by processes in the distal tubule.

MeSH terms

  • Animals
  • Circadian Rhythm*
  • Diuresis
  • Dogs
  • Female
  • Hormones / blood
  • Lithium / urine
  • Natriuresis*
  • Perfusion
  • Pressure
  • Renal Circulation*
  • Time Factors

Substances

  • Hormones
  • Lithium