Differential expression of gangliosides and galactolipids in fetal human oligodendrocytes and astrocytes in culture

Brain Res Dev Brain Res. 1996 May 31;93(1-2):172-81. doi: 10.1016/0165-3806(96)00030-2.

Abstract

The phenotypic expression of gangliosides and galactolipids was investigated using primary cultures of fetal human oligodendrocytes and astrocytes. These glial cells were isolated from fetal human brains of 12-18 weeks' gestation. Expression of gangliosides and galactolipids in oligodendrocytes and astrocytes was investigated by double labeling immunocytochemistry using rabbit antibodies specific for galactocerebroside (GalC, a cell type-specific marker for oligodendrocyte) and glial fibrillary acidic protein (GFAP, a cell type-specific marker for astrocyte) in combination with a panel of mouse monoclonal antibodies which react with specific gangliosides or galactolipids. A considerable number of GalC+ oligodendrocytes expressed intense immunoreactivities specific for GM3 (19%) and GM2 (45%) gangliosides. Approximately 11% of GalC+ oligodendrocytes expressed GM4 immunoreactivity, and smaller numbers of GalC+ oligodendrocytes expressed GD3 (4%), GD2 (1%), GT1b (5%) and A2B5 (3%) immunoreactivities. However, GalC+ oligodendrocytes did not express GM1, GD1a, GT1b or GQ1c. Major populations of GalC+ oligodendrocytes immunolabeled by rabbit anti-GalC antibody reacted with anti-GalC mAb (Ranscht mAb, 81%) or by anti-sulfatide mAb (O4 mAb, 91%). A considerable number of GFAP+ astrocytes expressed intense GM2 (26%) and GD2 (15%) immunoreactivities, while a smaller population expressed intense GM3 (3%), GD3 (6%) and GM4 (4%) immunoreactivities. Weak immunoreactions specific for GD1b, A2B5 and sulfatide were found in less than 1% each of GFAP+ astrocytes, while GFAP+ astrocytes did not express GM1, GD1a, GT1a, GT1b or GQ1b. These results indicate that GM3, GM2 and sulfatide are expressed in a major population of GalC+ oligodendrocytes, while GM3, GM2, GD3, GD2, and GM4 are expressed in a small but distinctive population of GFAP+ astrocytes. Our results suggest that GM4, GM1 and GD3, which are utilized as markers for adult human oligodendrocytes and myelin, are not the major ganglioside constituents in cultured fetal human oligodendrocytes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antibodies, Monoclonal
  • Astrocytes / metabolism*
  • Cells, Cultured / metabolism
  • Fetus / cytology
  • Galactolipids
  • Gangliosides / biosynthesis*
  • Gangliosides / immunology
  • Glycolipids / biosynthesis*
  • Glycolipids / immunology
  • Humans
  • Immunohistochemistry
  • Immunophenotyping
  • Oligodendroglia / metabolism*

Substances

  • Antibodies, Monoclonal
  • Galactolipids
  • Gangliosides
  • Glycolipids