Altered surfactant function and structure in SP-A gene targeted mice

Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9594-9. doi: 10.1073/pnas.93.18.9594.

Abstract

The surfactant protein A (SP-A) gene was disrupted by homologous recombination in embryonic stem cells that were used to generate homozygous SP-A-deficient mice. SP-A mRNA and protein were not detectable in the lungs of SP-A(-/-) mice, and perinatal survival of SP-A(-/-) mice was not altered compared with wild-type mice. Lung morphology, surfactant proteins B-D, lung tissue, alveolar phospholipid pool sizes and composition, and lung compliance in SP-A(-/-) mice were unaltered. At the highest concentration tested, surfactant from SP-A(-/-) mice produced the same surface tension as (+/+) mice. At lower concentrations, minimum surface tensions were higher for SP-A(-/-) mice. At the ultrastructural level, type II cell morphology was the same in SP-A(+/+) and (-/-) mice. While alveolar phospholipid pool sizes were unperturbed, tubular myelin figures were decreased in the lungs of SP-A(-/-) mice. A null mutation of the murine SP-A gene interferes with the formation of tubular myelin without detectably altering postnatal survival or pulmonary function.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Blotting, Southern
  • Gene Targeting
  • Genotype
  • Glycoproteins / genetics
  • Glycoproteins / physiology*
  • Mice
  • Mutagenesis, Site-Directed
  • Phospholipids / analysis
  • Proteolipids / genetics
  • Proteolipids / physiology*
  • Pulmonary Alveoli / ultrastructure
  • Pulmonary Surfactant-Associated Protein A
  • Pulmonary Surfactant-Associated Proteins
  • Pulmonary Surfactants / genetics
  • Pulmonary Surfactants / physiology*
  • RNA, Messenger / metabolism

Substances

  • Glycoproteins
  • Phospholipids
  • Proteolipids
  • Pulmonary Surfactant-Associated Protein A
  • Pulmonary Surfactant-Associated Proteins
  • Pulmonary Surfactants
  • RNA, Messenger