Synthesis and evaluation of azole-substituted tetrahydronaphthalenes as inhibitors of P450 arom, P450 17, and P450 TxA2

Arch Pharm (Weinheim). 1996 May;329(5):251-61. doi: 10.1002/ardp.19963290506.

Abstract

In search of potential drugs for the treatment of estrogen- and androgen-dependent cancer as well as the prophylaxis of metastases, tetralones, tetralins, and dihydronaphthalenes bearing a OCH3 substituent at the benzene nucleus and an imidazol-4-yl, imidazol-1-yl, or 1,2,4-triazol-1-yl substituent in 2-position were synthesized with and without C1-spacer between the rings (compounds 2-26). The compounds were tested in vitro for inhibition of the three targets enzymes P450 arom (human placental microsomes), P450 17 (rat testicular microsomes), and P450 TxA2 (citrated human whole blood). To examine selectivity, some compounds were further tested in vitro for inhibition P450 18 (bovine adrenal mitochondria), P450 scc (bovine adrenal mitochondria) and corticoid formation (aldosterone, corticosterone; ACTH stimulated rat adrenal tissue). In vitro, selected compounds were examined in Sprague Dawley rats regarding P450 TxA2 inhibition, reduction of plasma testosterone concentration, antiuterotrophic activity (inhibition of the uterotrophic activity of androstenedione), reduction of plasma estradiol concentration (pregnant mares' serum gonadotropin-primed rats), and mammary tumor inhibiting activity (dimethylbenzanthracene-induced tumor; pre-and postmenopausal model). In the series of imidazol-4-yl compounds, which represent a novelty in the field of azole inhibitors of steroidogenic P450 enzymes, strong inhibitors of P450 arom and/or P450 17 were found; 7-OCH3-2-(imidazol-4-ylmethylene)-1-tetralone (4) and 7-OCH3-2-(imidazol-4-ylmethyl)-tetralin (12) are among the most potent inhibitors of P450 arom in vitro known so far. Compound 4 is a selective inhibitor, whereas 12 shows in addition strong inhibition of P450 17. In contrast to 12, the 6-OCH3 derivative (compound 11) is a selective inhibitor of P450 17, being 50 times more potent than ketoconazole. Some imidazol-1-yl compounds show a marked inhibition of P450 TxA2: 2-(imidazol-1-ylmethyl)-1-tetralone (13) is a selective inhibitor of P450 TxA2, whereas 7-OCH3-2-(imidazol-1-ylmethyl)-tetralin (17) as well 2-(imidazol-1-ylmethyl)-tetralin (16) and 7-OCH3-2-imidazol-1-yl-3, 4-dihydronaphthalene (25) additionally show strong inhibition of P450 arom and P450 17. Regarding the other steroidogenic P450 enzymes as well as corticosterone formation, the compounds show only little inhibitory activity. Aldosterone formation, however, is inhibited at low concentrations. Nevertheless, 4 and 12 are more selective, i.e. inhibit aldosterone synthesis less than the well known inhibitor of P450 arom fadrozole. The compounds show activity in the aforementioned in vivo tests.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Azoles / chemical synthesis*
  • Azoles / pharmacology
  • Cattle
  • Cytochrome P-450 Enzyme Inhibitors*
  • Enzyme Inhibitors / chemical synthesis*
  • Enzyme Inhibitors / pharmacology
  • Humans
  • Male
  • Rats
  • Rats, Sprague-Dawley
  • Tetrahydronaphthalenes / chemical synthesis*
  • Tetrahydronaphthalenes / pharmacology
  • Tumor Cells, Cultured

Substances

  • Azoles
  • Cytochrome P-450 Enzyme Inhibitors
  • Enzyme Inhibitors
  • Tetrahydronaphthalenes