Potentiation of a slow Ca(2+)-dependent K+ current by intracellular Ca2+ chelators in hippocampal CA1 neurons of rat brain slices

J Neurophysiol. 1995 Dec;74(6):2225-41. doi: 10.1152/jn.1995.74.6.2225.

Abstract

1. In hippocampal CA1 neurons of rat brain slices, a Ca(2+)-dependent slow afterhyperpolarization (sAHP) and underlying K+ current (IsAHP) are activated by Ca2+ influx and presumably reflect the time course of the intracellular Ca2+ signal produced by neuronal stimulation. We tested the hypothesis that when exogenous Ca2+ chelators become the predominant mobile Ca2+ buffer in the neuron, they alter the shape of intracellular Ca2+ signals responsible for IsAHP. The nature of this alteration provides insight into the mechanism of IsAHP generation. 2. Derivatives of 1,2-bis-[2-amino phenoxy] ethane N,N,N',N' tetraacetic acid (BAPTA) with different dissociation constants (KDS) for Ca2+ ranging from 0.15 to 7,000 microM were used to test this hypothesis. We also examined the effects of ethylene glycolbis (beta-aminoethyl either)-N,N,N',N'-tetraacetic acid (EGTA), which has a KD similar to that of BAPTA for Ca2+, but which binds and releases Ca2+ 100 times more slowly. When delivered to the cytoplasm by dialysis from a patch pipette, these chelators potentiated, inhibited, or had no effect on IsAHP depending on their concentration, affinity, and binding kinetics. 3. IsAHP decayed exponentially over much of its time course, with a half-decay time of 0.9 +/- 0.1 s (mean +/- SE, n = 22). Immediately after breakthrough into the whole cell configuration, there was an initial period of approximately 5 min during which IsAHP magnitude increased approximately 3.5-fold with no change in time course. Thereafter, the time course and amplitude of IsAHP were stable for > 45 min. 4. Addition of 1 mM of the high-affinity chelators 5,5'-dimethyl BAPTA or BAPTA to the pipette solution first increased the decay time of IsAHP 1.5-fold. However, within 10-15 min after break-through, the current was abolished. Addition of Ca2+ (0.1-1.0 mM) to the patch pipette containing the BAPTA derivatives reduced the ability of a given concentration of high-affinity chelator to inhibit IsAHP and also prolonged the period of IsAHP enhancement. A similar prolongation of the period of enhancement with even less attenuation of IsAHP was apparent with 0.1 mM 5,5'-dimethyl BAPTA and 0.1 mM Ca2+. 5. The intermediate-affinity chelator 4.4'-difluoro BAPTA (1 mM) prolonged the decay phase of the sAHP/IsAHP without attenuating the current. A twofold prolongation of IsAHP also was observed in neurons dialyzed with internal solution containing 3 mM EGTA and 0.3 mM Ca2+. Dialysis with 1 mM of the low-affinity chelators 2-amino-5-fluorophenol-N,N,O-triacetic acid (5-fluoro APTRA) or 5,5'-dinitro BAPTA had no apparent effect on IsAHP. All of the chelators that prolonged the decay phase of IsAHP also induced a rising phase such that a well-defined peak of IsAHP could be discerned at approximately 0.6 s after the end of the stimulus used to evoke the current. 6. Weak stimulation of muscarinic receptors selectively inhibits IsAHP. Thus the uncontaminated time course of IsAHP can be deduced by subtracting currents recorded before and after such muscarinic stimulation. With minimal exogenous buffer in the pipette (0.1 mM EGTA), the muscarinic-receptor-sensitive current exhibited a rising phase lasting approximately 300 ms and then decayed with a half-time of approximately 1 s. Both the rising and decay phases of the muscarinic-receptor-sensitive current were prolonged at least twofold by dialysis with BAPTA or 4,4'-difluoro BAPTA. Thus the effect of the chelators on the time course of IsAHP is not simply and artifact of inhibition of early components of the outward current. 7. The effects of BAPTA analogues on the time course of IsAHP are not due to changes in mobilization of intracellular Ca2+. External application of caffeine (10 mM), ryanodine (20 microM), dantrolene (20 microM), or thapsigargin (100 microM) had no effect on IsAHP recorded with the standard pipette solution or

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological
  • Animals
  • Calcium / physiology*
  • Chelating Agents / pharmacology*
  • Egtazic Acid / analogs & derivatives
  • Egtazic Acid / pharmacology
  • Electric Stimulation
  • Hippocampus / cytology
  • Hippocampus / drug effects
  • Hippocampus / metabolism*
  • In Vitro Techniques
  • Kinetics
  • Male
  • Neurons / drug effects
  • Neurons / metabolism*
  • Patch-Clamp Techniques
  • Potassium Channels / drug effects
  • Potassium Channels / metabolism*
  • Rats
  • Rats, Wistar
  • Receptors, Muscarinic / drug effects
  • Receptors, Muscarinic / physiology

Substances

  • Chelating Agents
  • Potassium Channels
  • Receptors, Muscarinic
  • Egtazic Acid
  • 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid
  • Calcium