Effective immunization against neuroblastoma using double-transduced tumor cells secreting GM-CSF and interferon-gamma

J Immunother Emphasis Tumor Immunol. 1996 Mar;19(2):113-24. doi: 10.1097/00002371-199603000-00004.

Abstract

Murine neuroblastoma, neuro-2a, was transduced with the retroviral vector MFG-granulocyte-macrophage colony-stimulating factor (GM-CSF), to examine immune stimulation conferred by localized GM-CSF production. Expression of murine GM-CSF by neuro-2a (N-2a/GM) significantly reduced its tumorigenicity. Moreover, immunization of mice with irradiated N-2a/GM cells resulted in a significant protective effect against live tumor challenge 14 days later. Approximately 41% of mice immunized with irradiated N-2a/GM versus 0% of those vaccinated with irradiated parental tumor survived. Surviving mice were rechallenged after 50 days with wild-type neuro-2a or with the Sa1 syngeneic sarcoma to discern whether the generated immunity was durable and tumor specific. All mice survived wild-type neuro-2a challenge, whereas none survived inoculation with Sa1. Because both CD4+ and CD8+ T cells were necessary during priming to this MHC class Ilo, II-tumor, these data indicate that major histocompatibility complex (MHC) class I+, II+ antigen-presenting cells (APCs) were required for the T-cell antitumor response. Co-expression of GM-CSF and IFN-gamma, both of which have immunostimulatory activities on antigen-presenting cells, abrogated the tumorigenic potential of this tumor and increased immunogenicity over N-2a/IFN but not N-2a/GM. Vaccination of mice with preexisting retroperitoneal tumors with irradiated N-2a/GM and irradiated N-2a/IFN/GM improved survival. There was a trend for nonirradiated transduced cells to be more immunogenic than their irradiated counterparts. Immunohistochemistry of tissues from the vaccination site revealed a pronounced macrophage infiltration associated with nonirradiated N-2a/GM and N-2a/IFN/GM. These data suggest that vaccination involving nonirradiated neuroblastoma cells transduced with genes that stimulate APCs may be a useful approach in stimulating antitumor T-cell responses.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • CD4-Positive T-Lymphocytes / immunology
  • CD8-Positive T-Lymphocytes / immunology
  • Cancer Vaccines / genetics
  • Cancer Vaccines / immunology*
  • Flow Cytometry
  • Granulocyte-Macrophage Colony-Stimulating Factor / genetics
  • Granulocyte-Macrophage Colony-Stimulating Factor / metabolism*
  • Interferon-gamma / genetics
  • Interferon-gamma / metabolism*
  • Mice
  • Mice, Inbred A
  • Neuroblastoma / immunology*
  • Neuroblastoma / pathology
  • Neuroblastoma / prevention & control*
  • Transfection / immunology
  • Tumor Cells, Cultured
  • Vaccines, Synthetic / immunology*

Substances

  • Cancer Vaccines
  • Vaccines, Synthetic
  • Interferon-gamma
  • Granulocyte-Macrophage Colony-Stimulating Factor