Contribution of plasma membrane and endoplasmic reticulum Ca(2+)-ATPases to the synaptosomal [Ca2+]i increase during oxidative stress

Brain Res. 1996 Mar 25;713(1-2):269-77. doi: 10.1016/0006-8993(95)01554-x.

Abstract

In the present study we analyzed the effect of ascorbate (0.8 mM)/Fe2+ (2.5 microM)-induced membrane lipid peroxidation on the levels of intracellular free calcium,[Ca2+]i and on the possible mechanisms involved in the perturbation of intracellular calcium homeostasis during oxidative stress. For this purpose, the influence of the ascorbate/iron oxidant system on the plasma membrane and endoplasmic reticulum Ca(2+)-dependent ATPases of brain cortical synaptosomes was studied. In addition, the influence of the peroxidative process on the uptake of calcium (45Ca2+) and on the Na+/Ca2+ exchange activity at the plasma membrane was evaluated. After ascorbate/Fe(2+)-induced membrane lipid peroxidation of the order of 18.05 +/- 4.20 nmol TBARS/mg protein, an increase in [Ca2+]i occurred, under basal or depolarizing conditions (30 mM KCl), which was dependent on the extracellular calcium concentration. Thus, for 1 and 3 mM extracellular calcium concentration, an increase of the resting [Ca2+]i values of 19.8% and 33.7% was observed, while after the K(+)-depolarization the enhancement of the [Ca2+]i was 18.4% and 29.5%, respectively. The Na+/Ca2+ exchange activity and the time-dependent influx of 45Ca2+ observed in basal conditions and after the 30 mM K(+)-depolarization, were not affected under the peroxidative conditions. The Ca(2+)-dependent ATPase activity of the synaptosomal plasma membrane was significantly depressed following peroxidation of membrane lipids, decreasing the V(max) by 48.1%, without significant changes in the affinity of the enzyme for calcium (K(m) for Ca2+ was 0.54 +/- 0.04 microM in control conditions and 0.56 +/- 0.034 microM in peroxidized conditions). The Ca(2+)-ATPase activity of the endoplasmic reticulum was also affected during ascorbate/iron-induced oxidative stress; thus, an inhibition of 45.2% was observed 5 min after adding ATP. These data suggest that the increase in synaptosomal [Ca2+]i due to oxidative stress may result from the inhibition of the plasma membrane and the endoplasmic reticulum membrane Ca(2+)-ATPase activities, probably as a result of the alteration of the lipid environment required for the maximal activity of these membrane enzymes. The consequent increase in [Ca2+]i may be responsible for the injury of the nervous tissue observed during several pathological conditions in which free radical generation seems to be involved.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphatases / drug effects*
  • Animals
  • Ascorbic Acid / pharmacology*
  • Calcium / metabolism*
  • Cell Membrane / metabolism*
  • Dose-Response Relationship, Drug
  • Lipid Peroxidation*
  • Oxidative Stress
  • Rats
  • Synaptosomes / drug effects*
  • Time Factors

Substances

  • Adenosine Triphosphatases
  • Ascorbic Acid
  • Calcium