Epidemiological analysis of persistent organochlorine contaminants in cetaceans

Rev Environ Contam Toxicol. 1996:146:91-172. doi: 10.1007/978-1-4613-8478-6_4.

Abstract

Information is provided to test the hypothesis that organochlorines introduced into the environment since the early 1940s could threaten the reproductive potential of baleen whales and other cetaceans. Comparisons are made using data on the role of organochlorines in a model system, the Great Lakes region of North America, and in model animals, including humans, pinnipeds, and other wildlife. DDT and PCB are used as model organochlorines with the caveat that there may be thousands of other chemicals in the environment also involved. Improved sensitivity in analytical quantification of synthetic chemicals in biological tissue has been accompanied by an increase in knowledge about biochemical processes that control development and function. The effects described in this review are the result of disrupted gene expression, not damage to the gene. The mechanisms of action of the organochlorines reveal their ability to affect developing organisms at very low concentrations during critical life stages: embryonic, fetal, and early postnatal. Exposure during early development can disrupt the organization of the endocrine, reproductive, immune and nervous systems, effecting irreversible damage that may not be expressed until the individuals reach adulthood. The recent discovery that human sperm count is declining worldwide at a rate of 1 x 10(6) sperm/(mL.yr) suggests common exposure to estrogen-like chemicals during prenatal and early postnatal development. This raises concern for other top predator species that also share the same exposure. Periods of intense feeding followed by long periods of fasting are common among species of baleen whales. This unique strategy places the embryonic and nursing calves in vulnerable positions, because under both situations maternal blood levels are elevated as a result of absorption from food intake or as a result of mobilization as fat is metabolized. Estimates of Toxic Equivalents (TEQs) based on the occurrence of four PCB congeners (118, 183, 153, 180) in sigma PCB reported in whales are highest for St. Lawrence belugas and Faroe Island long-finned pilot whales. This conservative approach reveals that some whale species are within the range of enzyme-induced TEQs at which effects have been associated with adverse health effects in other aquatic species. The epidemiological approach was used for analysis because it was developed to handle multiple exposure scenarios in which direct causal links are virtually impossible to isolate. The analysis includes the tenets of timeorder, strength of association, specificity of cause and effect, consistency, coherence, and predictive performance.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Body Burden
  • Cetacea / metabolism*
  • Environmental Health*
  • Humans
  • Hydrocarbons, Chlorinated*
  • Insecticides / metabolism*
  • Water Pollutants, Chemical / pharmacokinetics*

Substances

  • Hydrocarbons, Chlorinated
  • Insecticides
  • Water Pollutants, Chemical