Comparison of primary charge separation in the photosystem II reaction center complex isolated from wild-type and D1-130 mutants of the cyanobacterium Synechocystis PCC 6803

J Biol Chem. 1996 Jan 26;271(4):2093-101. doi: 10.1074/jbc.271.4.2093.

Abstract

We compare primary charge separation in a photosystem II reaction center preparation isolated from a wild-type (WT) control strain of the cyanobacterium Synechocystis sp. PCC 6803 and from two site-directed mutants of Synechocystis in which residue 130 of the D1 polypeptide has been changed from a glutamine to either a glutamate (mutant D1-Gln130Glu), as in higher plant sequences, or a leucine residue (mutant D1-Gln130Leu). The D1-130 residue is thought to be close to the pheophytin electron acceptor. We show that, when P680 is photoselectively excited, the primary radical pair state P680+Ph- is formed with a time constant of 20-30 ps in the WT and both mutants; this time constant is very similar to that observed in Pisum sativum (a higher plant). We also show that a change in the residue at position D1-130 causes a shift in the peak of the pheophytin Qx-band. Nanosecond and picosecond transient absorption measurements indicate that the quantum yield of radical pair formation (phi RP), associated with the 20-30-ps component, is affected by the identify of the D1-130 residue. We find that, for the isolated photosystem II reaction center particle, phi RP higher plant > phi RP D1-Gln130Glu mutant > phi RP WT > phi RP D1-Gln130Leu mutant. Furthermore, the spectroscopic and quantum yield differences we observe between the WT Synechocystis and higher plant photosystem II, seem to be reversed by mutating the D1-130 ligand so that it is the same as in higher plants. This result is consistent with the previously observed natural regulation of quantum yield in Synechococcus PS II by particular changes in the D1 polypeptide amino acid sequence (Clark, A.K., Hurry, V. M., Gustafsson, P. and Oquist, G. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 11985-11989).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cyanobacteria / chemistry*
  • Cyanobacteria / genetics
  • Kinetics
  • Mutagenesis, Site-Directed
  • Photosynthetic Reaction Center Complex Proteins / chemistry*
  • Photosynthetic Reaction Center Complex Proteins / genetics
  • Photosystem II Protein Complex
  • Spectrum Analysis
  • Structure-Activity Relationship

Substances

  • Photosynthetic Reaction Center Complex Proteins
  • Photosystem II Protein Complex