Cora valveless pulsatile rotary pump: new design and control

Ann Thorac Surg. 1996 Jan;61(1):463-8. doi: 10.1016/0003-4975(95)01046-7.

Abstract

For decades, research for developing a totally implantable artificial ventricle has been carried on. For 4 to 5 years, two devices have been investigated clinically. For many years, we have studied a rotary (but not centrifugal) pump that furnishes pulsatile flow without a valve and does not need external venting or a compliance chamber. It is a hypocycloidal pump based on the principle of the Maillard-Wankel rotary compressor. Currently made of titanium, it is activated by an electrical brushless direct-current motor. The motor-pump unit is totally sealed and implantable, without noise or vibration. This pump was implanted as a left ventricular assist device in calves. The midterm experiments showed good hemodynamic function. The hemolysis was low, but serious problems were encountered: blood components collecting on the gear mechanism inside the rotor jammed the pump. We therefore redesigned the pump to seal the gear mechanism. We used a double system to seal the open end of the rotor cavity with components polished to superfine optical quality. In addition, we developed a control system based on the study of the predicted shape of the motor current. The new design is now underway. We hope to start chronic experiments again in a few months. If the problem of sealing the bearing could be solved, the Cora ventricle could be used as permanent totally implantable left ventricular assist device.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cattle
  • Equipment Design
  • Heart-Assist Devices*
  • Prostheses and Implants