Determinants of release rate of tetanus vaccine from polyester microspheres

Pharm Res. 1993 Jul;10(7):945-53. doi: 10.1023/a:1018942118148.

Abstract

Controlled-release formulations based on poly(lactic) (PLA) and poly(lactic/glycolic) acid (PLGA) microspheres containing tetanus vaccine were designed. The polymers forming the microspheres were L-PLA of different molecular weights and DL-PLGA, 50:50. These microspheres were prepared by two solvent elimination procedures, both using a double emulsion, and were characterized for size, morphology, and toxoid release kinetics. The influence of formulation variables such as polymer type, vaccine composition, and vaccine/polymer ratio was also investigated. Both techniques yielded microspheres with similar size, morphology, and release properties. Microsphere size was dependent on the type of polymer and the presence of the surfactant L-alpha-phosphatidylcholine, which led to a reduction in microsphere size. On the other hand, the release kinetics of encapsulated protein were affected by the polymer properties (ratio lactic/glycolic acid and molecular weight) as well as by the vaccine composition, vaccine loading, and microsphere size. Moreover, for some formulations, a decrease in microsphere size occurred simultaneously, with an increase in porosity leading to an augmentation of release rate. The changes in the PLA molecular weight during in vitro release studies indicated that release profiles of tetanus toxoid from these microspheres were only marginally influenced by polymer degradation. A significant fraction of protein (between 15 and 35%) was initially released by diffusion through water-filled channels. In contrast, the decrease in the PLGA molecular weight over the first 10 days of incubation suggested that erosion of the polymer matrix substantially affects protein release from these microspheres. Among all formulations developed, two differing in microsphere size, polymer hydrophobicity, and release profile were selected for in vivo administration to mice.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Chromatography, High Pressure Liquid
  • Female
  • Immunoglobulin G / analysis
  • Immunoglobulin G / biosynthesis
  • Lactates / chemistry
  • Lactic Acid*
  • Mice
  • Microscopy, Electron
  • Microspheres
  • Molecular Weight
  • Particle Size
  • Phosphatidylcholines / chemistry
  • Polyesters
  • Polyglycolic Acid*
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Polymers / chemistry
  • Porosity
  • Proteins / chemistry
  • Tetanus Toxoid / administration & dosage*
  • Tetanus Toxoid / immunology
  • Tetanus Toxoid / pharmacokinetics

Substances

  • Immunoglobulin G
  • Lactates
  • Phosphatidylcholines
  • Polyesters
  • Polymers
  • Proteins
  • Tetanus Toxoid
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Polyglycolic Acid
  • Lactic Acid
  • poly(lactide)