Differential effects of hyperthermia on macrophage interleukin-6 and tumor necrosis factor-alpha expression

Am J Physiol. 1994 Apr;266(4 Pt 1):C967-74. doi: 10.1152/ajpcell.1994.266.4.C967.

Abstract

The pyrogenic cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) appear in the circulation during infections and injuries, but TNF-alpha and IL-6 are regulated differently in macrophages. We compared the effects of elevated temperatures within the usual febrile range on the expression of TNF-alpha and IL-6 in vitro in lipopolysaccharide (LPS)-stimulated human macrophages derived from peripheral blood monocytes (HuMoM phi). During an 18-h incubation at 37 degrees C with 5 ng/ml LPS, these cells released 5,030 +/- 1,460 pg TNF-alpha/10(6) cells (means +/- SE) and 1,380 +/- 280 pg IL-6/10(6) cells. In LPS-stimulated HuMoM phi incubated at 40 degrees C, TNF-alpha release was almost completely inhibited (76 +/- 76 pg TNF-alpha/10(6) cells; P < 0.01 compared with LPS-stimulated HuMoM phi at 37 degrees C), but release of IL-6 was preserved (1,600 +/- 780 pg IL-6/10(6) cells). Western and Northern analyses showed that levels of TNF-alpha mRNA and cell-associated and secreted TNF-alpha protein were decreased, but IL-6 expression was unchanged at 40 degrees C in LPS-stimulated macrophages. Incubating HuMoM phi at 40 degrees did not alter their viability after 18 h but induced a 75-fold increase in levels of the inducible heat-shock protein 72 (HSP-72) mRNA in the face of a 56% inhibition in total protein synthesis. Our results show that IL-6 expression persisted at incubation temperatures in the upper end of the physiological range that induced heat shock and attenuated the expression of functionally active TNF-alpha in LPS-stimulated HuMoM phi.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adolescent
  • Adult
  • Fever / metabolism*
  • Fever / pathology
  • Heat-Shock Proteins / metabolism
  • Humans
  • Interleukin-6 / metabolism*
  • Lipopolysaccharides / pharmacology
  • Macrophages / metabolism*
  • Temperature
  • Tumor Necrosis Factor-alpha / metabolism*

Substances

  • Heat-Shock Proteins
  • Interleukin-6
  • Lipopolysaccharides
  • Tumor Necrosis Factor-alpha