Ethanolamine utilization in Salmonella typhimurium: nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster

J Bacteriol. 1995 Mar;177(5):1357-66. doi: 10.1128/jb.177.5.1357-1366.1995.

Abstract

A fragment of the Salmonella typhimurium ethanolamine utilization operon was cloned and characterized. The 6.3-kb nucleotide sequence encoded six complete open reading frames, termed cchA, cchB, eutE, eutJ, eutG, and eutH. In addition, the nucleotide sequences of two incomplete open reading frames, termed eutX and eutI, were also determined. Comparison of the deduced amino acid sequences and entries in the GenBank database indicated that eutI encodes a phosphate acetyltransferase-like enzyme. The deduced amino acid sequences of the EutE and EutG proteins revealed a significant degree of homology with the Escherichia coli alcohol dehydrogenase AdhE sequence. Mutations in eutE or eutG completely abolished the ability of mutants to utilize ethanolamine as a carbon source and reduced the ability to utilize ethanolamine as a nitrogen source. The product of eutE is most probably an acetaldehyde dehydrogenase catalyzing the conversion of acetaldehyde into acetyl coenzyme A. The product of the eutG gene, an uncommon iron-containing alcohol dehydrogenase, may protect the cell from unconverted acetaldehyde by converting it into an alcohol. The deduced amino acid sequence of cchA resembles that of carboxysome shell proteins from Thiobacillus neapolitanus and Synechococcus sp. as well as that of the PduA product from S. typhimurium. CchA and CchB proteins may be involved in the formation of an intracellular microcompartment responsible for the metabolism of ethanolamine. The hydrophobic protein encoded by the eutH gene possesses some characteristics of bacterial permeases and might therefore be involved in the transport of ethanolamine. Ethanolamine-utilization mutants were slightly attenuated in a mouse model of S. typhimurium infection, indicating that ethanolamine may be an important source of nitrogen and carbon for S. typhimurium in vivo.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Alcohol Dehydrogenase / genetics
  • Aldehyde Oxidoreductases / genetics
  • Amino Acid Sequence
  • Animals
  • Bacterial Proteins / biosynthesis
  • Bacterial Proteins / genetics*
  • Base Sequence
  • Carbon Dioxide / metabolism
  • Cloning, Molecular
  • DNA Mutational Analysis
  • Ethanolamine
  • Ethanolamines / metabolism*
  • Genes, Bacterial / genetics*
  • Membrane Transport Proteins / genetics
  • Mice
  • Mice, Inbred BALB C
  • Molecular Sequence Data
  • Multigene Family / genetics*
  • Open Reading Frames / genetics
  • Operon / genetics
  • Salmonella typhimurium / genetics*
  • Salmonella typhimurium / pathogenicity
  • Sequence Analysis, DNA
  • Sequence Homology, Amino Acid
  • Virulence / genetics

Substances

  • Bacterial Proteins
  • Ethanolamines
  • Membrane Transport Proteins
  • Carbon Dioxide
  • Ethanolamine
  • Alcohol Dehydrogenase
  • Aldehyde Oxidoreductases
  • aldehyde dehydrogenase (NAD(P)+)

Associated data

  • GENBANK/U18560