Nitric oxide and endothelin secretion by brain microvessel endothelial cells: regulation by cyclic nucleotides

J Cell Physiol. 1993 Apr;155(1):104-11. doi: 10.1002/jcp.1041550114.

Abstract

Endothelin (ET)-1 was originally characterized as a potent vasoconstrictor peptide secreted by vascular endothelial cells. It possesses a wide range of biological activities within the cardiovascular system and in other organs, including the brain. Also secreted by endothelial cells, nitric oxide (NO), has recently been identified as a relaxing factor, as well as a pleiotropic mediator, second messenger, immune defence molecule, and neurotransmitter. Most of the data concerning the secretion of these two agents in vitro has been collected from studies on macrovascular endothelial cells. Given the remarkable heterogeneity of endothelia in terms of morphology and function, we have analyzed the ability of brain microvessel endothelial cells in vitro to release ET-1 and NO, which, at the level of the blood-brain barrier, have perivascular astrocytes as potential targets. The present study was performed with immortalized rat brain microvessel endothelial cells, which display in culture a non transformed phenotype. Our data demonstrate that: (1) these cells release NO when induced by IFN gamma and TNF alpha, (2) they constitutively secrete ET-1, and (3) cAMP potentiates the cytokine-induced NO release and exerts a biphasic regulation on ET-1 secretion: micromolar concentrations of 8-Br-cAMP inhibit and higher doses stimulate ET-1 secretion. This stimulation is blocked by EGTA and the calmodulin antagonist W7, but not by protein kinase C inhibitors, suggesting the involvement of the calmodulin branch of the calcium messenger system. These results suggest that cerebral microvessel endothelial cells may participate in vivo to the regulation of glial activity in the brain through the release of NO and ET-1.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Oxidoreductases / metabolism
  • Animals
  • Brain* / blood supply*
  • Clone Cells
  • Endothelins / metabolism*
  • Endothelium, Vascular / cytology
  • Endothelium, Vascular / drug effects*
  • Microcirculation
  • Nitric Oxide / metabolism*
  • Nitric Oxide Synthase
  • Nucleotides, Cyclic / biosynthesis
  • Nucleotides, Cyclic / physiology*

Substances

  • Endothelins
  • Nucleotides, Cyclic
  • Nitric Oxide
  • Nitric Oxide Synthase
  • Amino Acid Oxidoreductases