Increased amount and contour length distribution of small polydisperse circular DNA (spcDNA) in Fanconi anemia

Mutat Res. 1993 Mar;293(3):205-14. doi: 10.1016/0921-8777(93)90071-n.

Abstract

Small polydisperse circular DNA (spcDNA) in Fanconi anemia (FA) was analyzed from cultured fibroblast-like cells by electron microscopy. Application of the mica-press adsorption technique for the semi-quantitative determination of spcDNA amounts to three FA and three normal control skin-derived fibroblast strains revealed 85-fold increased levels of spcDNA in the FA cells. An even higher excess over controls was suggested when the FA fibroblasts were propagated for up to 11 serial in vitro passages, consistent with the short replicative life-span of primary FA cells and their rapid transition into a poorly dividing state, in which spcDNA reportedly further increases. In addition, contour length distributions of gradient-purified spcDNA preparations from five FA fibroblast strains were compared with those from five normal control strains. Mean spcDNA contour lengths were significantly greater in the FA than in the control cells. The reported findings of increased spcDNA amounts and sizes in FA coincide with a similar association of chromosome instability and abnormal spcDNA formation previously observed in cultured cells derived from angiofibromas in tuberous sclerosis. Circumstantial evidence from the present study in the paradigmatic chromosome breakage syndrome FA further supports the suggestion that a common mechanism underlies chromosome instability and the surplus generation of spcDNA. Notably, this apparent mechanism is functional in homonuclear primary cell strains with a distinct inherited basis of their chromosome instability, and is not restricted to heteroploid and neoplastoid cell lines.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Cells, Cultured
  • Child
  • Child, Preschool
  • DNA, Circular / metabolism*
  • DNA, Circular / ultrastructure
  • Fanconi Anemia / genetics*
  • Female
  • Fibroblasts
  • Humans
  • Male

Substances

  • DNA, Circular