Ionic requirements for RNA binding, cleavage, and ligation by the hairpin ribozyme

Biochemistry. 1993 Feb 2;32(4):1088-95. doi: 10.1021/bi00055a014.

Abstract

Metal ion requirements for RNA binding, cleavage, and ligation by the hairpin ribozyme have been analyzed. RNA cleavage is observed when Mg2+, Sr2+, or Ca2+ are added to a 40 mM Tris-HCl buffer, indicating that these divalent cations were capable of supporting the reaction. No reaction was observed when other ions (Mn2+, Co2+, Cd2+, Ni2+, Ba2+, Na+, K+, Li+, NH4+, Rb+, and Cs+) were tested. In the absence of added metal ions, spermidine can induce a very slow ribozyme-catalyzed cleavage reaction that is not quenched by chelating agents (EDTA and EGTA) that are capable of quenching the metal-dependent reaction. Addition of Mn2+ to a reaction containing 2 mM spermidine increases the rate of the catalytic step by at least 100-fold. Spermidine also reduces the magnesium requirement for the reaction and strongly stimulates activity at limiting Mg2+ concentrations. There are no special ionic requirements for formation of the initial ribozyme-substrate complex--analysis of complex formation using native gels and kinetic assays shows that the ribozyme can bind substrate in 40 mM Tris-HCl buffer. Complex formation is inhibited by both Mn2+ and Co2+. Ionic requirements for the ribozyme-catalyzed ligation reaction are very similar to those for the cleavage reaction. We propose a model for catalysis by the hairpin ribozyme that is consistent with these findings. Formation of an initial ribozyme-substrate complex occurs without the obligatory involvement of divalent cations. Ions (e.g., Mg2+) can then bind to form a catalytically proficient complex, which reacts and dissociates.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Base Sequence
  • Binding Sites
  • Calcium / metabolism
  • Cobalt / metabolism
  • Magnesium / metabolism
  • Manganese / metabolism
  • Molecular Sequence Data
  • Nucleic Acid Conformation
  • RNA / metabolism*
  • RNA, Catalytic / chemistry
  • RNA, Catalytic / metabolism*
  • Spermidine / metabolism
  • Strontium / metabolism

Substances

  • RNA, Catalytic
  • Cobalt
  • Manganese
  • RNA
  • Magnesium
  • Calcium
  • Spermidine
  • Strontium