Kinetics of the mitochondrial three-subunit NADH dehydrogenase interaction with hexammineruthenium(III)

Biochim Biophys Acta. 1995 Jun 1;1230(1-2):23-30. doi: 10.1016/0005-2728(95)00015-b.

Abstract

The steady-state kinetics of the NADH dehydrogenase activity of the three-subunit flavo-iron-sulfur protein (FP, Type II NADH dehydrogenase) in the presence of the one-electron acceptor hexammineruthenium(III) (HAR) were studied. The maximal catalytic activities of FP with HAR as electron acceptor calculated on the basis of FMN content were found to be approximately the same for the submitochondrial particles, Complex I and purified FP. This result shows that the protein structure responsible for the primary NADH oxidation by FP is not altered during the isolation procedure and the lower (compared with Complex I) catalytic capacity of the enzyme previously reported was due to the use of inefficient electron acceptors. Simple assay procedures for NADH dehydrogenase activity with HAR as the electron acceptor are described. The maximal activity at saturating concentrations of HAR was insensitive to added guanidine, whereas at fixed concentration of the electron acceptor, guanidine stimulated oxidation of low concentrations of NADH and inhibited the reaction at saturating NADH. The inhibitory effect of guanidine was competitive with HAR. The double-reciprocal plots 1/v vs. 1/[NADH] at various HAR concentrations gave a series of straight lines intercepting on the ordinate. The plots 1/v vs. 1/[HAR] at various NADH concentrations gave a series of straight lines intercepting in the fourth quadrant. The kinetics support the mechanism of the overall reaction where NADH is oxidized by the protein-Ru(NH3)3+(6) complex in which positively charged electron acceptor is bound at the specific site close to FMN, thus stabilizing the flavosemiquinone intermediate.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cattle
  • Enzyme Activation
  • Kinetics
  • Mitochondria, Heart / enzymology*
  • NADH Dehydrogenase / metabolism*
  • Ruthenium Compounds / metabolism*

Substances

  • Ruthenium Compounds
  • hexammineruthenium
  • NADH Dehydrogenase