Effects of resistance training and dietary protein intake on protein metabolism in older adults

Am J Physiol. 1995 Jun;268(6 Pt 1):E1143-53. doi: 10.1152/ajpendo.1995.268.6.E1143.

Abstract

Nitrogen (N) balance, fed-state leucine kinetics, and urinary 3-methylhistidine (3-MeH) excretion were examined in 12 men and women, aged 56-80 yr, before and during 12 wk of resistance training (RT). Subjects were randomized to groups that consumed diets providing either 0.80 +/- 0.02 g protein.kg-1.day-1 (lower protein, LP) or 1.62 +/- 0.02 g protein.kg-1.day-1 (higher protein, HP). At baseline, mean N balance was negative for LP (-4.6 +/- 3.4 mg N.kg-1.day-1) and positive for HP (13.6 +/- 1.0 mg N.kg-1.day-1). N retention increased similarly in LP and HP at the 11th wk of RT by 12.8 and 12.7 mg N.kg-1.day-1, respectively. Thus LP had an increased efficiency of N retention. LP had decreased leucine flux (P < 0.001), oxidation (P < 0.001), and uptake for protein synthesis (P < 0.02), relative to HP, both at baseline and after RT. Leucine flux increased with RT in both diet groups (P < 0.05) and was associated mainly with an increase in protein synthesis in LP (91% of change in flux) and an increase in oxidation in HP (72% of change in flux; RT-diet interaction, P < 0.05). RT increased actomyosin protein breakdown (increased 3-MeH-to-creatinine ratio, P < 0.01). Diet-related differences in protein metabolism did not influence body composition changes with RT. These data show that the efficiency of N retention and protein utilization during RT is higher in older subjects who consume 0.8 vs. 1.6 g protein.kg-1.day-1 dietary protein.

Publication types

  • Clinical Trial
  • Comparative Study
  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Aged
  • Aged, 80 and over
  • Body Composition
  • Dietary Proteins*
  • Energy Intake
  • Exercise Therapy*
  • Female
  • Humans
  • Leucine / metabolism*
  • Male
  • Middle Aged
  • Muscle, Skeletal / anatomy & histology
  • Physical Endurance
  • Proteins / metabolism*
  • Regression Analysis

Substances

  • Dietary Proteins
  • Proteins
  • Leucine