Differential contribution of L- and N-type calcium channels on rat hippocampal acetylcholine release

Neurosci Lett. 1994 Dec 5;182(2):125-8. doi: 10.1016/0304-3940(94)90779-x.

Abstract

Bay K 8644, nimodipine and omega-conotoxin GVIA (omega-CgTx) were used to study the different contribution of voltage-sensitive calcium channels (VSCC) to [3H]acetylcholine ([[3H]ACh) release in rat hippocampal synaptosomes. In our experimental conditions, the percentage of calcium-dependent ACh release was approximately 80%. Nimodipine (0.01-10 microM) and Bay 8644 (0.01-10 microM) were not able to modify the [3H]ACh release under stimulating conditions (15 mM K+). Nevertheless, when K+ concentration was reduced to 8 mM, a significant increase in [3H]ACh release was observed at 1 and 10 microM of Bay K 8644. Nimodipine (0.01-10 microM) failed to reverse the effect of Bay K 8644 on [3H]ACh release. Finally, omega-CgTx (0.001-1 microM) caused a concentration-dependent reduction of [3H]ACh release in K+ (15 mM)-stimulating conditions. These results suggest that the N-type VSCC probably play a predominant role in regulating the [3H]ACh release in synaptosomes from rat hippocampus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester / pharmacology
  • Acetylcholine / metabolism*
  • Animals
  • Calcium Channel Blockers
  • Calcium Channels / physiology*
  • Dose-Response Relationship, Drug
  • Hippocampus / physiology*
  • Male
  • Nimodipine / pharmacology*
  • Potassium / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Synaptosomes / physiology

Substances

  • Calcium Channel Blockers
  • Calcium Channels
  • Nimodipine
  • 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester
  • Acetylcholine
  • Potassium