Design, synthesis, and structure-activity relationship of novel dinucleotide analogs as agents against herpes and human immunodeficiency viruses

J Med Chem. 1995 Nov 10;38(23):4648-59. doi: 10.1021/jm00023a004.

Abstract

A new acyclic nucleoside phosphonate (13) containing an adenine moiety was synthesized, which acted as an excellent inhibitor of calf mucosal adenosine deaminase. This inhibitory property allows it to exert great synergistic effect on certain antiviral agents (e.g., ara-A, 37). Phosphonate 13 was not phosphorylated by the bovine brain guanylate kinase nor by 5-phosphoribosyl 1-pyrophosphate synthetase. Syntheses of biologically active nucleotide phosphonate 40 and its phosphonoamidate derivative 42 were accomplished, which showed remarkable activity against herpes viruses and exhibited low host cell toxicity. 3'-Azido-nucleoside phosphonate 20 and 3'-fluoronucleoside phosphonate 32, as well as the corresponding dinucleotide analogs 47 and 48, and their respective phosphonoamidates 53-56 were also synthesized as new compounds, among which phosphonoamidates 53-56 showed potent activity against human immunodeficiency virus. Phosphonoamidates 55 and 56 bearing a methyl D-alaninate moiety exhibited less cellular toxicity than 53 and 54 bearing a methyl L-alaninate moiety. Nucleotide phosphonate 40 as well as dinucleotide phosphonates 47 and 48 were found susceptible to degradation by phosphodiesterases. Their respective phosphonoamidates 42 and 53-56, however, were completely resistant to snake venom and spleen enzymes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Deaminase Inhibitors
  • Animals
  • Antiviral Agents / chemical synthesis*
  • Antiviral Agents / chemistry
  • Antiviral Agents / pharmacology
  • Brain / enzymology
  • Cattle
  • Dinucleoside Phosphates / chemical synthesis*
  • Dinucleoside Phosphates / chemistry
  • Dinucleoside Phosphates / pharmacology
  • Drug Design*
  • Drug Synergism
  • Enzyme Inhibitors / pharmacology
  • Guanylate Cyclase / metabolism
  • HIV-1 / drug effects*
  • Herpesviridae / drug effects*
  • Herpesvirus 1, Human / drug effects
  • Herpesvirus 2, Human / drug effects
  • Kinetics
  • Molecular Structure
  • Organophosphonates / chemical synthesis
  • Phosphoric Diester Hydrolases / metabolism
  • Phosphorylation
  • Ribose-Phosphate Pyrophosphokinase / metabolism
  • Structure-Activity Relationship

Substances

  • Adenosine Deaminase Inhibitors
  • Antiviral Agents
  • Dinucleoside Phosphates
  • Enzyme Inhibitors
  • Organophosphonates
  • Ribose-Phosphate Pyrophosphokinase
  • Phosphoric Diester Hydrolases
  • Guanylate Cyclase