Stereological analysis of plasmolysis in logarithmic-phase Bacillus licheniformis

J Bacteriol. 1981 Apr;146(1):391-7. doi: 10.1128/jb.146.1.391-397.1981.

Abstract

The plasmolytic response of Bacillus licheniformis 749/C cells to the increasing osmolarity of the surrounding medium was quantitated with stereological techniques. Plasmolysis was defined as the area (in square micrometers) of the inside surface of the bacterial wall not in association with bacterial membrane per unit volume (in cubic micrometers) of bacteria. This plasmolyzed surface area was zero when the cells were suspended in a concentration of sucrose solution lower than 0.5 M, but increased linearly when the sucrose molarity rose above 0.5 M, reaching a plateau value of 3.61 micrometers2/micrometers3 in 2 M sucrose. In contrast, when the bacterial cells were treated with lysozyme plasmolysis increased abruptly from 0.06 micrometers2/micrometers3 in 0.75 M sucrose to 4.09 micrometers2/micrometers3 in 1 M sucrose. When the time of exposure was prolonged, the degree of plasmolysis increased gradually for the duration of the experiment (30 min) after exposure to 1 M sucrose without lysozyme, whereas with lysozyme plasmolysis reached a maximum (4.09 micrograms2/micrometers3) in 2 to 5 min. The examination of ultrastructure showed that the protoplast bodies of lysozyme-treated cells in 1 M sucrose and untreated cells in 2 M sucrose are maximally retracted from the intact wall of the bacteria; hardly any retraction of protoplasts could be seen for untreated cells in 1 M sucrose. The data suggest that the B. licheniformis cells are isoosmotic to 800 to 1,100 mosM solutions, but are able to withstand much greater osmotic pressure with no signs of plasmolysis because the cell wall and the plasma membrane are held in close association, perhaps by a covalent bond. It is likely that lysozyme weakens this bond by degradation of the peptidoglycan layer. Cellular autolysis also weakens this wall-membrane association.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacillus / growth & development
  • Bacillus / ultrastructure*
  • Cell Membrane / drug effects
  • Cell Membrane / ultrastructure*
  • Kinetics
  • Muramidase / pharmacology
  • Osmolar Concentration
  • Photogrammetry
  • Sucrose / pharmacology

Substances

  • Sucrose
  • Muramidase