Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions

Appl Environ Microbiol. 1985 May;49(5):1080-3. doi: 10.1128/aem.49.5.1080-1083.1985.

Abstract

Tetrachloroethylene (PCE) and trichloroethylene (TCE), common industrial solvents, are among the most frequent contaminants found in groundwater supplies. Due to the potential toxicity and carcinogenicity of chlorinated ethylenes, knowledge about their transformation potential is important in evaluating their environmental fate. The results of this study confirm that PCE can be transformed by reductive dehalogenation to TCE, dichloroethylene, and vinyl chloride (VC) under anaerobic conditions. In addition, [14C]PCE was at least partially mineralized to CO2. Mineralization of 24% of the PCE occurred in a continuous-flow fixed-film methanogenic column with a liquid detention time of 4 days. TCE was the major intermediate formed, but traces of dichloroethylene isomers and VC were also found. In other column studies under a different set of methanogenic conditions, nearly quantitative conversion of PCE to VC was found. These studies clearly demonstrate that TCE and VC are major intermediates in PCE biotransformation under anaerobic conditions and suggest that potential exists for the complete mineralization of PCE to CO2 in soil and aquifer systems and in biological treatment processes.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biotransformation
  • Carbon Dioxide / metabolism*
  • Carbon Radioisotopes
  • Dichloroethylenes / metabolism*
  • Euryarchaeota / metabolism
  • Hydrocarbons, Chlorinated / metabolism*
  • Tetrachloroethylene / metabolism*
  • Trichloroethylene / metabolism*
  • Vinyl Chloride / metabolism*
  • Vinyl Compounds / metabolism*

Substances

  • Carbon Radioisotopes
  • Dichloroethylenes
  • Hydrocarbons, Chlorinated
  • Vinyl Compounds
  • Carbon Dioxide
  • Trichloroethylene
  • Tetrachloroethylene
  • Vinyl Chloride