Compounding and Characterization of a Selfmicroemulsifying System of Ticagrelor Tablets for Enhanced Solubility

Int J Pharm Compd. 2024 May-Jun;28(3):194-204.

Abstract

Ticagrelor is used to inhibit acute coronary syndrome, but its poor solubility and low bioavailability limit its in-vivo efficacy. The purpose of this study was to manufacture an optimized ticagrelor-loaded self-microemulsifying drug-delivery system in the form of tablets to enhance the solubility and dissolution of that drug. A preliminary study was conducted to determine the extent of turbidity of oils for this study, and a pseudoternaryphase diagram was used to identify the region of formation of microemulsion with 3 ratios (1:1,1:2, and 1:3). The solubility of ticagrelor was determined with the selected oil and a surfactant-and-cosurfactant mixture. A simplex lattice mixture design was used to compound the microemulsion. The microemulsion was converted to granules by the use of an adsorbent (aerosol) after a precipitation study. After characterization, the resultant granules were compressed into tablets for an in-vitro release study. The optimized formulation was subjected to various characterization procedures to determine the zeta potential, particle size, and surface morphology. The solubility of the drug was found to have increased manyfold in all formulations, and the optimized formulation was found to be 221.37 mg/mL. With respect to the ticagrelor tablets, aerosol up to 30% was needed as an adsorbent in the self-microemulsifying drug-delivery system. The compression of the ticagrelor granules was satisfactory for tablet formation. In all formulations, the release of the active drug was more than 80% within 30 minutes of dissolution time. The optimized icagrelorloaded self-microemulsifying drug-delivery system formulation consisted of medium-chain triglyceride oil (47.88.0%), surfactant (28.25%), and cosurfactant (23.85%), which significantly improved the dissolution of ticagrelor. The results of analysis via scanning electron microscopy revealed that the surface and size of the drug and the zeta potential were also satisfactory and suggested that the optimized ticagrelor-loaded self-microemulsifying drug-delivery system described in this report could be successfully used as an efficient method for achieving enhanced dissolution of ticagrelor.

MeSH terms

  • Chemistry, Pharmaceutical
  • Drug Compounding*
  • Drug Delivery Systems
  • Drug Liberation
  • Emulsions*
  • Particle Size
  • Solubility*
  • Surface-Active Agents / chemistry
  • Tablets*
  • Ticagrelor* / administration & dosage
  • Ticagrelor* / chemistry