Increasing structure diversity of farnesylated chalcones by a fungal aromatic prenyltransferase

Phytochemistry. 2024 May 18:224:114149. doi: 10.1016/j.phytochem.2024.114149. Online ahead of print.

Abstract

Farnesylated chalcones were favored by researchers due to their different biological activities. However, only five naturally occurring farnesylated chalcones were described in the literature until now. Here, the farnesylation of six chalcones by the Aspergillus terreus aromatic prenyltransferase AtaPT was reported. Fourteen monofarnesylated chalcones (1F1-1F5, 2F1-2F3, 3F1, 3F2, 4F1, 4F2, 5F1, 6F1, and 6F2) and a difarnesylated product (2F3) were obtained, enriching the diversity of natural farnesylated chalcones significantly. Ten of them are C-farnesylated products, which complement O-farnesylated chalcones by chemical synthesis. Fourteen products have not been reported prior to this study. Nine of the produced compounds (1F2-1F5, 2F1-2F3, 5F1, and 6F1) exhibited inhibitory effect on α-glucosidase with IC50 values ranging from 24.08 ± 1.44 to 190.0 ± 0.28 μM. Among them, compounds 2F3 with IC50 value at 24.08 ± 1.44 μM and 1F4 with IC50 value at 30.09 ± 0.59 μM showed about 20 times stronger than the positive control acarbose with an IC50 at 536.87 ± 24.25 μM in α-glucosidase inhibitory assays.

Keywords: Enzyme catalysis; Farnesylated chalcones; Farnesylations; Prenyltransferases; α-glucosidase.