NosZ I carrying microorganisms determine N2O emissions from the subtropical paddy field under elevated CO2 and strongly CO2-responsive cultivar

Sci Total Environ. 2024 May 17:935:173255. doi: 10.1016/j.scitotenv.2024.173255. Online ahead of print.

Abstract

Elevated CO2 (eCO2) decreases N2O emissions from subtropical paddy fields, but the underlying mechanisms remain to be investigated. Herein, the response of key microbial nitrogen cycling genes to eCO2 (ambient air +200 μmol CO2 mol-1) in four rice cultivars, including two weakly CO2-responsive (W27, H5) and two strongly CO2-responsive cultivars (Y1540, L1988), was investigated. Except for nosZ I, eCO2 did not significantly alter the abundance of the other genes. NosZ I was a crucial factor governing N2O emissions, especially under eCO2 and a strongly responsive cultivar. eCO2 affected the nosZ I gene abundance (p < 0.05), for instance, the nosZ I gene abundance of cultivar W27 increased from 1.53 × 107 to 2.86 × 107 copies g-1 dw soil (p < 0.05). In the nosZ I microbial community, the known taxa were mainly Pseudomonadota (phylum) (19.74-31.72 %) and Alphaproteobacteria (class) (0.56-13.12 %). In the nosZ I community assembly process, eCO2 enhanced the role of stochasticity, increasing from 35 % to 85 % (p < 0.05), thereby inducing diffusion limitations of weakly responsive cultivars to dominate (67 %). Taken together, the increase in nosZ I gene abundance is a potential reason for the alleviation of N2O emissions from subtropical paddy fields under eCO2.

Keywords: Elevated CO(2); Free-air CO(2) enrichment (FACE); Keystone taxa; N(2)O; Strongly/weakly CO(2)-responsive cultivar; nosZ I.