Impact of perinatal factors on meconium aspiration syndrome in full-term newborns and the construction of a column chart prediction model: An observational study

Medicine (Baltimore). 2024 May 17;103(20):e38279. doi: 10.1097/MD.0000000000038279.

Abstract

To explore the influence of perinatal-related factors on meconium aspiration syndrome (MAS) in full-term neonates and construct a nomogram prediction model for risk stratification of neonatal MAS and adoption of preventive measures. A total of 424 newborns and their mothers who were regularly examined at our hospital between January 2020 and December 2023 who had meconium-contaminated amniotic fluid during delivery were retrospectively selected as participants. Neonates were divided into MAS and non-MAS groups based on whether MAS occurred within 3 days after birth. Data from the 2 groups were analyzed, and factors influencing MAS were screened using multivariate logistic regression analysis. The R3.4.3 software was used to construct a nomogram prediction model for neonatal MAS risk. Receiver operating characteristic (ROC) curve analysis and the Hosmer-Lemeshow goodness-of-fit test were used to evaluate the performance of the model, and its clinical effectiveness was evaluated using a decision curve. Among the 424 neonates with meconium-stained amniotic fluid, 51 developed MAS within 3 days of birth (12.03%). Multivariate logistic regression analysis showed that a low amniotic fluid index before delivery (OR = 2.862, P = .019), advanced gestational age (OR = 0.526, P = .034), cesarean section (OR = 2.650, P = .013), severe amniotic fluid contamination (OR = 4.199, P = .002), low umbilical cord blood pH (OR = 2.938, P = .011), and low neonatal Apgar 1-min score (OR = 3.133, P = .006) were influencing factors of MAS in full-term neonates. Based on the above indicators, a nomogram prediction model for MAS risk of full-term newborns was constructed. The area under the ROC curve of the model was 0.931. The model was also tested for goodness-of-fit deviation (χ2 = 3.465, P = .903). Decision curve analysis found that the model was clinically effective in predicting the net benefit of MAS risk in neonates with meconium-stained amniotic fluid. The construction of a column chart prediction model for neonatal MAS risk based on prenatal amniotic fluid index, gestational age, delivery method, amniotic fluid contamination level, newborn umbilical blood pH value, and Apgar 1-min score has a certain application value.

Publication types

  • Observational Study

MeSH terms

  • Adult
  • Amniotic Fluid*
  • Apgar Score
  • Cesarean Section / statistics & numerical data
  • Female
  • Gestational Age
  • Humans
  • Infant, Newborn
  • Logistic Models
  • Male
  • Meconium
  • Meconium Aspiration Syndrome* / epidemiology
  • Nomograms*
  • Pregnancy
  • ROC Curve
  • Retrospective Studies
  • Risk Assessment / methods
  • Risk Factors