Carbon-Promoted Pt-Single Atoms Anchored on RuO2 Nanorods to Boost Electrochemical Hydrogen Evolution

ACS Appl Mater Interfaces. 2024 May 29;16(21):27504-27510. doi: 10.1021/acsami.4c06033. Epub 2024 May 17.

Abstract

While efficient for electrochemical hydrogen evolution reaction (HER), Pt is limited by its cost and rarity. Traditional Pt catalysts and Pt single-atom (aPt) catalysts (Pt-SACs) face challenges in maintaining kinetically favorable HER pathways (Volmer-Tafel) at ultralow Pt loadings. Herein, carbon-promoted aPts were deposited on RuO2 without the addition of reductants. aPts confined on carbon-supported RuO2 nanorods (aPt/RuO2NR/Carbon) promoted "inter-aPts" Tafel. aPt/RuO2NR/Carbon is the Pt-SAC that retained underpotentially deposited H; additionally, its HER onset overpotential was "negative". The aPt/RuO2NR/Carbon exhibited 260-fold higher Pt mass activity (imPt)/turnover frequency (TOF) (522.7 A mg-1/528.4 s-1) than that of commercial Pt/C (1.9 A mg-1/1.9 s-1). In an ultralow Pt loading (0.19 μg cm-2), the HER rate-determining step maintained Volmer-Tafel and the Pt utilization efficiency was 100.3%.

Keywords: Pt; RuO2 nanorods; hydrogen evolution reaction; single-atom catalysts; water splitting.