1,4-Disubstituted Piperazin-2-Ones as Selective Late Sodium Current Inhibitors with QT Interval Shortening Properties in Isolated Rabbit Hearts

J Med Chem. 2024 May 17. doi: 10.1021/acs.jmedchem.4c00677. Online ahead of print.

Abstract

Late sodium current (INa) inhibitors are a new subclass of antiarrhythmic agents. To overcome the drawbacks, e.g., low efficacy and inhibition effect on K+ current, of the FDA-approved late INa inhibitor ranolazine, chain amide 6a-6q, 1,4-disubstituted piperazin-2-ones 7a-7s, and their derivatives 8a-8n were successively designed, synthesized, and evaluated in vitro on the NaV1.5-transfected HEK293T cells by the whole-cell patch clamp recording assay at the concentration of 40 μM. Among the new skeleton compounds, 7d showed the highest efficacy (IC50 = 2.7 μM) and good selectivity (peak/late ratio >30 folds), as well as excellent pharmacokinetics properties in mice (T1/2 of 3.5 h, F = 90%, 3 mg/kg, po). It exhibited low hERG inhibition and was able to reverse the ATX-II-induced augmentation of late INa phenotype of LQT3 model in isolated rabbit hearts. These results suggest the application potentials of 7d in the treatments of arrhythmias related to the enhancement of late INa.