Memristive arrangements of nanofluidic pores

Phys Rev E. 2024 Apr;109(4-1):044803. doi: 10.1103/PhysRevE.109.044803.

Abstract

We demonstrate that nanofluidic diodes in multipore membranes show a memristive behavior that can be controlled not only by the amplitude and frequency of the external signal but also by series and parallel arrangements of the membranes. Each memristor consists of a polymeric membrane with conical nanopores that allow current rectification due to the electrical interaction between the ionic solution and the pore surface charges. This surface charge-regulated ionic transport shows a rich nonlinear physics, including memory and inductive effects, which are characterized here by the current-voltage curves and electrical impedance spectroscopy. Also, neuromorphiclike potentiation of the membrane conductance following voltage pulses (spikes) is observed. The multipore membrane with nanofluidic diodes shows physical concepts that should have application for information processing and signal conversion in iontronics hybrid devices.