Proactive interference of visual working memory chunks implicates long-term memory

Mem Cognit. 2024 May 16. doi: 10.3758/s13421-024-01585-w. Online ahead of print.

Abstract

Visual working memory (VWM) is a limited cognitive resource that can be functionally expanded through chunking (Miller, 1956). For example, participants can hold an increasing number of colours in mind as they learn to chunk reliably paired combinations (Brady et al., 2009). We investigated whether this benefit is mediated through the in situ compression of VWM representations (Brady et al., 2009) or the offloading of chunks to long-term memory (LTM; Huang & Awh, 2018; Ngiam et al., 2019) by asking if a vulnerability of LTM - proactive interference - influences VWM performance. We adapted previous designs using deterministic (Experiment 1, N = 60) and probabilistic pairings (Experiments 2 and 3, N = 64 and 80, respectively), to include colour pairings that swapped in sequence along with pairings that were consistent in sequence. Generally, participants reported colours from consistent pairs more accurately than from swapping pairs, which we designed to drive interference in LTM (Experiments 1 and 2). The error profiles also pointed to proactive interference between swapping pairs in all three experiments. Moreover, participants who had explicit awareness of frequent colour pairings had higher VWM accuracy, and their errors reflected more proactive interference than their unaware counterparts (Experiment 3). This pattern of long-term proactive interference in a VWM task lends support for accounts of VWM chunking that propose LTM offloading.

Keywords: Chunking; Interference/inhibition in memory retrieval; Short term memory; Working memory.