Programable sewage-cleaning technology: Regenerating chitosan biofilms with anti-bacterial capacity via self-purification of water pollutants

Int J Biol Macromol. 2024 May 15;271(Pt 1):132355. doi: 10.1016/j.ijbiomac.2024.132355. Online ahead of print.

Abstract

In this paper, a novel programable sewage-cleaning technology for the regeneration of antibacterial nanocomposites via the removal of wastewater pollutants is presented. Montmorillonite (MMT) was encapsulated in poly(vinyl alcohol) (PVA)-enhanced chitosan (CTS) hydrogels to form MMT-loaded nanocomposite biofilms (PCM). The PCM nanocomposite biofilms exhibited increased breaking strength and elongation at break, by factors of approximately 1.38 and 1.40, respectively, compared with those of the pure PVA/CTS biofilms. The maximum adsorption capacity of the PCM nanocomposite biofilms toward tetracycline and Ag(I) is 275.0 and 567.0 mg/g, respectively. The adsorbed nanocomposite biofilms exhibited excellent antibacterial properties against Staphylococcus aureus and Escherichia coli. Meanwhile, the nanocomposite also showed an effective adsorption capacity toward other toxic components, where the highest adsorption capacity is 2748.0 mg/g (for methyl blue). The simulation results indicated that the adsorption behaviors of the malachite green, neutral red, methyl blue, tetracycline, Cu(II), Zn(II), and Ag(I) by the PCM nanocomposite biofilms followed pseudo-second-order kinetic and Freundlich isotherm models. Furthermore, the PCM nanocomposite biofilms are stable in PBS solution but degradable in lysozyme-containing PBS solution, suggesting their potential application in the wastewater treatment as well as antibacterial fields.

Keywords: Composite biofilms; Gelation-casting method; Programable sewage-cleaning.